Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnic and Histochemistry 1998-Sep

A histochemical examination of the staining of kainate-induced neuronal degeneration by anionic dyes.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
J A Kiernan
C M Macpherson
A Price
T Sun

キーワード

概要

Anionic dyes, notably acid fuchsine, strongly stain the nuclei and cytoplasm of neurons severely damaged by injury or disease. We provide detailed instructions for staining nervous tissue with toluidine blue and acid fuchsine for optimal demonstration of injured neurons. Degeneration was induced in the hippocampus of the mouse by systemic administration of kainic acid, and the resulting acidophilia was investigated using paraffin sections of the Carnoy- or Bouin-fixed brains. The affected cells were bright red with the toluidine blue-acid fuchsine sequence. Their nuclei were stainable also with alkaline Biebrich scarlet and with the 1,2-naphthoquinone-4-sulfonic acid-Ba(OH)2 method; all staining was blocked by benzil but was relatively refractory to deamination by HNO2. These properties indicated an arginine-rich protein. The nuclei were strongly acidophilic in the presence of a high concentration of DNA (strong Feulgen reaction), and acidophilia could not be induced in normal neuronal nuclei by chemical extraction of nucleic acids. The cytoplasmic acidophilia of degenerating hippocampal neurons was due to a protein rich in lysine (extinguished by alkalinity, easily prevented by deamination, and unaffected by benzil). Stainable RNA was absent from the perikarya of the affected cells, but normal neuronal cytoplasm did not become acidophilic after extraction of nucleic acids. We suggest that kainate-induced cell death is preceded by increased production of basic proteins, which become concentrated in the nucleus and perikaryon. Groups of small, darkly staining neurons were seen in the cerebral cortex in control and kainate-treated mice. These shrunken cells were purple with the toluidine blue-acid fuchsine stain, and were attributed to local injury incurred during removal of the unfixed brain.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge