Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pesticide Biochemistry and Physiology 2018-Jan

Alterations of mitochondrial electron transport chain and oxidative stress induced by alkaloid-like α-aminonitriles on Aedes aegypti larvae.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Mayra A Borrero Landazabal
Aurora L Carreño Otero
Vladimir V Kouznetsov
Jonny E Duque Luna
Stelia C Mendez-Sanchez

キーワード

概要

Aedes aegypti mosquitoes are responsible for dengue, chikungunya, and Zika virus transmission in tropical and subtropical areas around the world. Due to the absence of vaccines or antiviral drugs for human treatment, the majority of control strategies are targeted at Ae. aegypti elimination. Our research on mosquito control insecticidal agents has previously shown that the alkaloid girgensohnine and its analogues (α-aminonitriles) present in vitro acetylcholinesterase inhibition and in vivo insecticidal activity against Ae. aegypti. However, acetylcholinesterase inhibition may not be the only mechanism of action behind these effects. On this basis, the principal aim of this study was to elucidate the possible action mode of four α-aminonitriles on Ae. aegypti by studying other important enzymatic targets, such as mitochondrial electron transport chain complexes, catalase, and superoxide dismutase, key oxidative stress enzymes. Mitochondria were isolated from Ae. aegypti larvae by differential centrifugation, stored at -70°C, and fragmented using ultrasound for 10min. The effects of α-aminonitriles (1 to 4) over enzymatic activities were evaluated using concentrations of 8nM, 2μM, 8μM, and 40μM. Results indicated that α-aminonitriles caused significant NADH dehydrogenase and succinate oxidase inhibition (~44% at the highest concentration tested). Succinate dehydrogenase and cytochrome c oxidase activities were found to increase (162% and 106% at 40μM, respectively). It was also observed that these compounds produced catalase inhibition and thus prevented H2O2 reduction, which induced the formation of reactive oxygen species (ROS). Moreover, NBT assay showed that compounds 3 and 4 (with 2-(pyrrolidin-1-yl) acetonitrile as substituent) increased by approximately 50% the O2●- concentration in the mitochondrial respiratory chain. It was concluded that the tested compounds act as complex I inhibitors by blocking electron transport and causing electron leak, possibly between complex I and III. Furthermore, α-aminonitriles inhibited catalase activity; compounds 1 and 2 (with piperidine fragment) inhibited glutathione reductase activity and further promoted the accumulation of ROS, which probably induced oxidative stress.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge