Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2003-May

Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Burkhard Messner
Oliver Thulke
Anton R Schäffner

キーワード

概要

Arabidopsis thaliana Heynh. harbors UDP-glucose-dependent glucosyltransferase (UGT; EC 2.4.1.-) activities that are able to glucosylate xenobiotic substrates as a crucial step in their detoxification, similar to other plants. However, it has remained elusive whether side-activities of UGTs acting on endogenous substrates could account for that property. Therefore, seven recombinantly expressed A. thaliana enzymes were tested using the phytotoxic xenobiotic model compound 2,4,5-trichlorophenol (TCP) as a substrate. The enzymes were selected from the large Arabidopsis UGT gene family because their previously identified putative endogenous substrates comprised both carboxylic acid, and phenolic and aliphatic hydroxyl moieties as biochemical targets. In addition, UGT75D1, which was shown to accept the endogenous flavonoid kaempferol as a substrate, was included. All enzymes tested, except the sterol-conjugating UGT80A2, glucosylated TCP as a parallel activity. The K(m) values for TCP ranged from 0.059 to 1.25 mM. When tested at saturating concentrations of the native substrates the glucosylation of TCP by the glucose-ester-forming UGT84A1 and UGT84A2 was suppressed by p-coumaric acid and sinapic acid, respectively. In contrast, the activities of UGT72E2 and UGT75D1 toward their phenolic native substrates and the xenobiotic TCP were mutually inhibited. TCP was a competitive inhibitor of sinapyl alcohol glucosylation by UGT72E2. These overlapping in vitro activities suggest cross-talk between the detoxification of xenobiotics and endogenous metabolism at the biochemical level, depending on the presence of competing substrates and enzymes.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge