Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2019-Feb

Berry transcriptome: insights into a novel resource to understand development dependent secondary metabolism in Withania somnifera (Ashwagandha).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Sandhya Tripathi
Rajender Sangwan
Bhawana Mishra
Jyoti Jadaun
Neelam Sangwan

キーワード

概要

Withania somnifera (Ashwagandha) is considered as Rasayana in Indian systems of medicine. This study reports a novel transcriptome of W. somnifera berries, with high depth, quality and coverage. Assembled and annotated transcripts for nearly all genes related with the withanolide biosynthetic pathway were obtained. Tissue-wide gene expression analysis reflected almost similar definitions for the terpenoid pathway in leaf, root and berry tissues with relatively higher abundance of transcripts linked to steroid, phenylpropanoid metabolism as well as flavonoid metabolism in berries. The metabolome map generated from the data embodied transcripts from 143 metabolic pathways connected together and mediated collectively by about 1792 unique enzyme functions specific to berry, leaf and root tissues, respectively. Transcripts specific to cytochrome p450 (CYP450), methyltransferases and glycosyltransferases were distinctively located in a tissue specific manner and exhibited a complex network. Significant distribution of transcription factor genes such as MYB, early light inducible protein (ELI), minichromosome maintenance1, agamous, deficiens and serum response factor (MADS) and WRKY etc. was observed, as the major transcriptional regulators of secondary metabolism. Validation of the assembly was ascertained by cloning WsELI, which has a light dependent regulatory role in development. Quantitative expression of WsELI was observed to be considerably modulated upon exposure to abiotic stress and elicitors. Co-relation of over-expression of WsELI, may provide new aspects for the functional role of ELI proteins in plants linked to secondary metabolism. The study offers the first comprehensive and comparative evaluation of W. somnifera transcriptome data between the three tissues and across other members of Solanaceae (Nicotiana, Solanum and Capsicum) with respect to major pathways and their metabolome regulation.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge