Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Health Perspectives 1998-Dec

Bioassay-directed fractionation and chemical identification of mutagens in bioremediated soils.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
L R Brooks
T J Hughes
L D Claxton
B Austern
R Brenner
F Kremer

キーワード

概要

Soil from a Superfund site (Reilly Tar Site, St. Louis Park, Minnesota) contaminated with polycyclic aromatic hydrocarbons (PAHs) from creosote was treated with several bioremediation technologies including bioslurry (BS), biopile (BP), compost (CMP), and land treatment (LT). These treatment technologies are being evaluated in pilot scale laboratory systems by the U.S. Environmental Protection Agency's National Risk Management Research Laboratory in Cincinnati, Ohio. To evaluate the genotoxicity and identify the mutagens in the soil before and after the various treatments, fractionated extracts of five soils were bioassayed for mutagenic activity with a microsuspension modification of the Salmonella histidine reversion assay. Soils were extracted by sonication using dichloromethane (DCM). The five extracts were fractionated in triplicate (two for bioassay and one for chemical analysis) by reverse-phase high-performance liquid chromatography (HPLC) using hexane/DCM/methanol, and the fraction for bioassay were solvent-exchanged into dimethyl sulfoxide by nitrogen evaporation. Forty HPLC fractions for each sample were bioassayed in strain YG1041 with and without exogenous liver metabolic activation. As shown in a companion paper, the mutagenicity of two treatments (BS and BP) was significantly greater than the mutagenicity of the untreated soil. Mutagenic fractions (> 500 revertants) were analyzed by gas chromatography/mass spectrometry (GC/MS). PAH analysis of the soils indicated that all treatments were effective in reducing the total PAH concentration (48-74%). Qualitative GC/MS analysis of the mutagenic fractions from the BS and BP treatments indicated that they contained azaarenes, which are mutagens. The CMP and LT processes were the most effective and least toxic bioremediation procedures based on mutagenic potency and chemical analysis. This research demonstrated that the combination of bioassays and chemical analysis provided a more accurate determination of toxicity in these complex environmental mixtures.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge