Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 2002-Dec

Biomimetic approaches to tendon repair.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Thomas J Koob

キーワード

概要

The linear organization of collagen fibers in tendons results in optimal stiffness and strength at low strains under tensile load. However, this organization makes repairing ruptured or lacerated tendons extremely difficult. Current suturing techniques to join split ends of tendons, while providing sufficient mechanical strength to prevent gapping, are inadequate to carry normal loads. Immobilization protocols necessary to restore tendon congruity result in scar formation at the repair site and peripheral adhesions that limit excursion. These problems are reviewed to emphasize the need for novel approaches to tendon repair, one of which is the development of biomimetic tendons. The objective of the empirical work described here was to produce biologically-based, biocompatible tendon replacements with appropriate mechanical properties to enable immediate mobilization following surgical repair. Nor-dihydroguaiaretic acid (NDGA), a di-catechol from creosote bush, caused a dose dependent increase in the material properties of reconstituted collagen fibers, achieving a 100-fold increase in strength and stiffness over untreated fibers. The maximum tensile strength of the optimized NDGA treated fibers averaged 90 MPa; the elastic modulus of these fibers averaged 580 MPa. These properties were independent of strain rates ranging from 0.60 to 600 mm/min. Fatigue tests established that neither strength nor stiffness were affected after 80 k cycles at 5% strain. Treated fibers were not cytotoxic to tendon fibroblasts. Fibroblasts attached and proliferated on NDGA treated collagen normally. NDGA-fibers did not elicit a foreign body response nor did they stimulate an immune reaction during six weeks in vivo. The fibers survived 6 weeks with little evidence of fragmentation or degradation. The polymerization scheme described here produces a fiber-reinforced NDGA-polymer with mechanical properties approaching an elastic solid. The strength, stiffness and fatigue properties of the NDGA-treated fibers are comparable to those of tendon. These fibers are biocompatible with tendon fibroblasts and elicit little rejection or antigenic response in vivo. These results indicate that NDGA polymerization may provide a viable approach for producing collagenous materials that can be used to bridge gaps in ruptured or lacerated tendons. The tendon-like properties of the NDGA-fiber would allow early mobilization after surgical repair. We predict that timely loading of parted tendons joined by this novel biomaterial will enhance mechanically driven production of neo-tendon by the colonizing fibroblasts and result in superior repair and rapid return to normal properties.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge