Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 1997

Cardiovascular effects of arginine vasotocin in the rainbow trout Oncorhynchus mykiss.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Conklin
Chavas
Duff
Jr
OlsonÝ

キーワード

概要

The physiological functions of the neurohypophyseal hormone arginine vasotocin (AVT) in teleosts are not clear. In the present studies, the sites and mechanisms of action of AVT on the rainbow trout Oncorhynchus mykiss cardiovascular system were examined in unanesthetized instrumented fish, perfused organs and isolated vessels. Injection of AVT (1, 10 or 100 pmol kg-1 body mass) into trout with dorsal aortic cannulas produced a modest, but dose-dependent, increase in dorsal aortic pressure (PDA). Bolus injection of AVT (100 pmol kg-1 body mass), or continuous infusion (6.7 pmol kg-1 min-1), into trout instrumented with dorsal aortic, ventral aortic and central venous cannulas and a ventral aortic flow probe significantly increased PDA as well as ventral aortic (PVA) and central venous (PVEN) blood pressure. Bradycardia accompanied the rapid rise in PVA while gill resistance (RG) increased. Maximum response to the AVT bolus was reached within 13­21 min and the response decayed slowly over the ensuing 90 min. AVT infusion (6.7 pmol kg-1 min-1) significantly increased PVEN and mean circulatory filling pressure and decreased unstressed blood volume, whereas venous compliance was unaffected. These in vivo studies indicate that AVT increases venous tone, thereby mobilizing blood from the unstressed compartment into the stressed compartment. This increases PVEN, which increases venous return and helps maintain, or slightly elevate, cardiac output. This, combined with an elevated RG and slightly elevated systemic resistance (RS), increases both PVA and PDA; however, the rise in PDA is mitigated by a disproportionate increase in RG relative to RS. In vitro, the effects of AVT are consistent with in vivo responses. AVT increased vascular resistance in the perfused gill and perfused trunk and contracted isolated vascular rings from both rainbow and steelhead trout. The general order of sensitivity of isolated vessels to AVT was (in decreasing order): anterior cardinal vein, celiacomesenteric artery, ductus Cuvier, efferent branchial artery, ventral aorta and coronary artery. Extracellular Ca2+ accounted for over 70 % of the tension in the AVT-contracted efferent branchial artery, but only 57 % of the tension in the anterior cardinal vein. Vascular AVT receptor sensitivity (EC50) in vitro ranged from 0.3 to 6 nmol l-1 and was similar to the estimated ED50 for the dose-dependent increase in PDA in vivo (approximately 1 nmol l-1). AVT was not inotropic in paced ventricular rings nor did it exhibit vasorelaxant activity in perfused organs or vascular rings. These results show that AVT is a potent vasoconstrictor in trout and that its two primary cardiovascular targets are the systemic veins and the branchial vasculature.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge