Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Chemical Toxicology 1994-Feb

Cellular and molecular mechanisms in photochemical sensitization: studies on the mechanism of action of psoralens.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
J D Laskin

キーワード

概要

The interaction of chemicals and light to induce sensitization reactions in the skin is a complex multistep process resulting in physiological changes in both the dermal and epidermal cell layers as well as characteristic inflammatory reactions. It is becoming increasingly apparent that an array of growth factors and cytokines acting on different components of the skin are involved in the regulation of these processes. One of the best characterized classes of chemical photosensitizers are the psoralens, a group of compounds that must be activated by UV light in wavelengths ranging from 320 to 400 nm (UVA) to initiate their biological actions. Recent evidence suggests that the ability of the psoralens to induce sensitization reactions, which include alterations in epidermal cell growth and differentiation, is highly specific and due to interactions with the epidermal growth factor (EGF) receptor. Specific receptor proteins for the psoralens have been identified in cytoplasmic and membrane fractions of responsive cells. Binding of psoralens to these proteins is of high affinity and reversible. UVA light causes psoralens to photoalkylate their receptors, a process thought to activate the receptor. One early biochemical event at the cell surface membrane linked to psoralen-receptor activation is the inhibition of EGF binding and alterations in the structure and function of the EGF receptor. These findings suggest that the cell surface membrane is an important target for chemical photosensitizers such as the psoralens. In addition, since photoactivated psoralens modulate epidermal cell growth and differentiation, the ability of these compounds to modify the function of the EGF receptor may underlie their biological activity as chemical photosensitizers.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge