Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 1999-Jul

Characterization of recombinant Arabidopsis thaliana threonine synthase.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
B Laber
W Maurer
C Hanke
S Gräfe
S Ehlert
A Messerschmidt
T Clausen

キーワード

概要

Threonine synthase (TS) catalyses the last step in the biosynthesis of threonine, the pyridoxal 5'-phosphate dependent conversion of L-homoserine phosphate (HSerP) into L-threonine and inorganic phosphate. Recombinant Arabidopsis thaliana TS (aTS) was characterized to compare a higher plant TS with its counterparts from Escherichia coli and yeast. This comparison revealed several unique properties of aTS: (a) aTS is a regulatory enzyme whose activity was increased up to 85-fold by S-adenosyl-L-methionine (SAM) and specifically inhibited by AMP; (b) HSerP analogues shown previously to be potent inhibitors of E. coli TS failed to inhibit aTS; and (c) aTS was a dimer, while the E. coli and yeast enzymes are monomers. The N-terminal region of aTS is essential for its regulatory properties and protects against inhibition by HSerP analogues, as an aTS devoid of 77 N-terminal residues was neither activated by SAM nor inhibited by AMP, but was inhibited by HSerP analogues. The C-terminal region of aTS seems to be involved in dimer formation, as the N-terminally truncated aTS was also found to be a dimer. These conclusions are supported by a multiple amino-acid sequence alignment, which revealed the existence of two TS subfamilies. aTS was classified as a member of subfamily 1 and its N-terminus is at least 35 residues longer than those of any nonplant TS. Monomeric E. coli and yeast TS are members of subfamily 2, characterized by C-termini extending about 50 residues over those of subfamily 1 members. As a first step towards a better understanding of the properties of aTS, the enzyme was crystallized by the sitting drop vapour diffusion method. The crystals diffracted to beyond 0.28 nm resolution and belonged to the space group P222 (unit cell parameters: a = 6.16 nm, b = 10.54 nm, c = 14.63 nm, alpha = beta = gamma = 90 degrees).

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge