Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2005-Jan

Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Lucia Marri
Francesca Sparla
Paolo Pupillo
Paolo Trost

キーワード

概要

Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) interact in the chloroplast stroma through the action of the small peptide CP12. This supramolecular complex concurs with the light-dependent modulation in vivo of GAPDH and PRK activities. The expression patterns of several genes potentially involved in the formation of the complex have been studied. The genome of Arabidopsis thaliana includes seven genes for phosphorylating GAPDH isozymes, one PRK gene, and three genes for CP12. The expression of four GAPDH genes was analysed, i.e. GapA-1 and GapB for photosynthetic GAPDH of chloroplasts (NAD(P)-dependent), GapC-1 for cytosolic GAPDH, and GapCp-1 for plastid GAPDH (both NAD-dependent). A similar analysis was performed with PRK and two CP12 genes (CP12-1, CP12-2). The expression of GapA-1, GapB, PRK, and CP12-2 was found to be co-ordinately regulated with the same organ specificity, all four genes being mostly expressed in leaves and flower stalks, less expressed in flowers, and little or not expressed in roots and siliques. The expression of all these genes in leaves was terminated during prolonged darkness or following sucrose treatments, and their transcripts decayed with similar kinetics. At variance with CP12-2, gene CP12-1 appeared to be expressed more in flowers, it was totally insensitive to darkness, and less affected by sucrose. The expression of glycolytic GapC was strong and ubiquitous, insensitive to dark treatments, and unaffected by sucrose. GapCp transcripts were also found to be ubiquitous at lower levels, slowly decreasing in the dark and stable in sucrose-treated leaves. The co-ordinated expression of genes GapA-1, GapB, PRK, and CP12-2 is consistent with their specific involvement in the formation of the photosynthetic regulatory complex of chloroplasts.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge