Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2016-Jul

Colon-derived uremic biomarkers induced by the acute toxicity of Kansui radix: A metabolomics study of rat plasma and intestinal contents by UPLC-QTOF-MS(E).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Zhou Yang
Jin-Jun Hou
Peng Qi
Min Yang
Bing-Peng Yan
Qi-Rui Bi
Rui-Hong Feng
Wen-Zhi Yang
Wan-Ying Wu
De-An Guo

キーワード

概要

Kansui radix (KR) is a poisonous Chinese herbal medicine recorded in the Chinese Pharmacopoeia, and the acute toxicity obstructs its clinical applications. To explore its acute toxicity mechanism to enhance clinical safety, a metabolomics study based on UPLC-ESI-QTOF-MS(E) was performed. Wistar rats were exposed for 4h to the aqueous and ethyl acetate extracts prepared from KR at a high dose (25g/kg). The contents of six different sections of rat intestine, including the duodenum, jejunum, ileum, cecum, colon, and rectum were collected as samples for the first time, as well as the rat plasma. The interesting results showed that only those rats exposed to the ethyl acetate extract showed a watery diarrhea, similar to the observed acute human toxicity. The identified biomarkers found in the plasma, such as phenol sulfate, indoxyl sulfate, and p-cresol sulfate were significantly perturbed in the rats. These biomarkers are known as colon-derived uremic compounds, which were first reported with respect to KR. The three essential amino acids which produced these biomarkers were only found in the contents of colon and rectum. A hypothesis was proposed that only the colon-derived uremic compounds induced by KR might be responsible for the acute toxicity. Three traditional process methods to reduce the toxicity of KR were compared based on these biomarkers, and different levels of toxicity modulation were observed. These results may be helpful to further understand the mechanism of acute toxicity, and the relevance of the traditional process methods to ameliorate the adverse effects of KR.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge