Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Topics in Stroke Rehabilitation 2016-Dec

Contributions of voluntary activation deficits to hand weakness after stroke.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Gilles Hoffmann
Megan O Conrad
Dan Qiu
Derek G Kamper

キーワード

概要

Hemiparetic stroke survivors often exhibit profound weakness in the digits of the paretic hand, but the relative contribution of potential biomechanical and neurological impairment mechanisms is not known. Establishing sources of impairment would help in guiding treatment.

The present study sought to quantify the role of diminished capacity to voluntarily active finger flexor and extensor muscles as one possible neurological mechanism.

Two groups of stroke survivors with "severe" (N = 9) or "moderate" (N = 9) hand impairment and one group of neurologically intact individuals (N = 9) participated. Subjects were asked to create isometric flexion force and extension force, respectively, with the tip of the middle finger. The maximum voluntary force (MVF) and the maximum stimulated force (MSF) produced by an applied train of electrical current pulses (MSF) were recorded for flexion and extension. Percent voluntary activation (PVA) was computed from MVF and MSF.

Significant deficits in both MVF and PVA were observed for stroke subjects compared to control subjects. For example, activation deficits were >80% for extensor digitorum communis (EDC) for the "severe" group. Maximum voluntary force and PVA deficits were greater for EDC than for flexor digitorum superficialis (FDS) for stroke subjects with severe impairment. Maximum voluntary force and PVA correlated significantly for stroke subjects but not for control subjects.

Although extrinsic finger muscles could be successfully recruited electrically, voluntary excitation of these muscles was substantially limited in stroke survivors. Thus, finger weakness after stroke results predominantly from the inability to fully activate the muscle voluntarily.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge