Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1990-Sep

Cytosolic cycles regulate the turnover of sucrose in heterotrophic cell-suspension cultures of Chenopodium rubrum L.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
J Dancer
W D Hatzfeld
M Stitt

キーワード

概要

We have investigated whether sucrose accumulation in heterotrophic cell-suspension cultures of Chenopodium rubrum L. is regulated by a cycle in which sucrose is simultaneously synthesised and degraded. Net sucrose accumulation was measured by monitoring the sucrose content, unidirectional synthesis was monitored by supplying pulses of [(14)C] glucose, and unidirectional degradation was estimated from the difference between unidirectional synthesis and net accumulation. When 50 mM glucose was supplied to carbohydrate-depleted cells there was a rapid net accumulation of sucrose, which stopped after 24 h. The incorporation of (14)C into sucrose was similar to the initial rate of net sucrose accumulation, but rapid (14)C incorporation continued after the cells had stopped accumulating sucrose. A method was developed to rapidly separate sucrose-phosphate synthase (SPS) from uridine-diphosphate-hydrolysing activities which interfered with the assay. The cells contained enough SPS activity to catalyse the observed rate of sucrose synthesis. SPS activity increased in cells which had stopped accumulating sucrose, and the enzyme became less sensitive to inhibition by inorganic phosphate. Sucrose synthase and alkaline invertase activity were four- and twofold higher than SPS activity, and both degradative enzymes increased in cells which had stopped accumulating sucrose. Sucrose synthase is strongly modulated by the concentration of sucrose and by competitive feedback regulation by fructose in these cells. It is concluded that sucrose accumulation ceases in these cells because the rate of degradation of sucrose increases until it matches the rate of synthesis. It is discussed how this cycle is regulated, and how it may interact with the substrate cycle between triose-phosphates and hexose-phosphates (Hatzfeld and Stitt, 1990, Planta 180, 198-204). These cycles allow sucrose turnover to respond in a highly sensitive manner to small changes in the balance between the supply of sucrose and the demand for carbon for respiration and biosynthesis in the cell.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge