Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
mBio 2017-Apr

Deciphering the Regulatory Network between the SREBP Pathway and Protein Secretion in Neurospora crassa.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Lina Qin
Vincent W Wu
N Louise Glass

キーワード

概要

Sterol regulatory element binding proteins (SREBPs) are conserved from yeast to mammalian cells and function in the regulation of sterol homeostasis. In fungi, the SREBP pathway has been implicated in the adaptation to hypoxia and in virulence. In Neurospora crassa and Trichoderma reesei, the SREBP pathway also negatively regulates protein secretion under lignocellulolytic conditions. Here we utilized global transcriptional profiling combined with genetic and physiological analyses to address the regulatory link between the SREBP pathway and protein secretion in N. crassa Our results demonstrated that the function of the SREBP pathway in ergosterol biosynthesis and adaptation to hypoxia was conserved in N. crassa Under lignocellulolytic conditions, the SREBP pathway was highly activated, resulting in the reduced expression of lytic polysaccharide monooxygenases, which require molecular oxygen for catalytic activity. Additionally, activation of the SREBP pathway under lignocellulolytic conditions repressed a set of genes predicted to be involved in the endoplasmic reticulum stress response. Here we show that the inability of a hac-1 mutant, which bears a deletion of the major regulator of the unfolded protein response (UPR), to efficiently produce cellulases and utilize cellulose was suppressed by mutations in the SREBP pathway. The analyses presented here demonstrated new SREBP pathway functions, including linkages to the UPR, and provide new clues for genetic engineering of filamentous fungi to improve their production of extracellular proteins.IMPORTANCE The role of SREBP transcription factors in the regulation of sterol biosynthesis is conserved from humans to yeast. In filamentous fungi, this pathway regulates the secretion of lignocellulolytic enzymes during plant biomass deconstruction. Here we show that the SREBP pathway in Neurospora crassa regulates the production of specific cellulases, lytic polysaccharide monooxygenases that utilize molecular oxygen. Via global transcriptional profile and genetic analyses, a relationship between the SREBP pathway and the unfolded protein response (UPR) pathway was revealed, suggesting a regulatory interplay of these two pathways in the trafficking of plant biomass-degrading enzymes. These findings have implications for our understanding of the cross talk of the SREBP and UPR pathways in other organisms and will guide the rational engineering of fungal strains to improve cellulolytic enzyme production.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge