Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Invertebrate Pathology 2013-Feb

Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Carlos Carpio
Olivier Dangles
Stéphane Dupas
Xavier Léry
Miguel López-Ferber
Katerine Orbe
David Páez
François Rebaudo
Alex Santillán
Betty Yangari

キーワード

概要

The Guatemala potato tuber moth Tecia solanivora (Povolny) (Lep. Gelechiidae) is an invasive species from Mesoamerica that has considerably extended its distribution area in recent decades. While this species is considered to be a major potato pest in Venezuela, Colombia, and Ecuador, currently no specific control methods are available for farmers. To address this issue we developed a biopesticide formulation to be used in integrated pest management of T. solanivora, following three steps. First, search for entomopathogenic viruses were carried out through extensive bioprospections in 12 countries worldwide. As a result, new Phthorimaea operculella granulovirus (PhopGV) isolates were found in T. solanivora and five other gelechid species. Second, twenty PhopGV isolates, including both previously known and newly found isolates, were genetically and/or biologically characterized in order to choose the best candidate for a biopesticide formulation. Sequence data were obtained for the ecdysteroid UDP-glucosyltransferase (egt) gene, a single copy gene known to play a role in pathogenicity. Three different sizes (1086, 1305 and 1353 bp) of egt were found among the virus isolates analyzed. Unexpectedly, no obvious correlation between egt size and pathogenicity was found. Bioassays on T. solanivora neonates showed a maximum of a 14-fold difference in pathogenicity among the eight PhopGV isolates tested. The most pathogenic PhopGV isolate, JLZ9f, had a medium lethal concentration (LC(50)) of 10 viral occlusion bodies per square mm of consumed tuber skin. Third, we tested biopesticide dust formulations by mixing a dry carrier (calcium carbonate) with different adjuvants (magnesium chloride or an optical brightener or soya lecithin) and different specific amounts of JLZ9f. During laboratory experiments, satisfactory control of the pest (>98% larva mortality compared to untreated control) was achieved with a formulation containing 10 macerated JLZ9f-dead T. solanivora larvae per kg of calcium carbonate mixed with 50 mL/kg of soya lecithin. The final product provides an interesting alternative to chemical pesticides for Andean farmers affected by this potato pest.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge