Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2015-Aug

Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Manuel Candelario
Erika Cuellar
Jorge Mauricio Reyes-Ruiz
Narek Darabedian
Zhou Feimeng
Ricardo Miledi
Amelia Russo-Neustadt
Agenor Limon

キーワード

概要

BACKGROUND

Withania somnifera (WS) has been traditionally used in Ayurvedic medicine as a remedy for debility, stress, nervous exhaustion, insomnia, loss of memory, and to enhance cognitive function. This study provides an empirical evidence to support the traditional use of WS to aid in mental process engaging GABAergic signaling.

OBJECTIVE

We evaluated the effect of aqueous WS root extract (aqWS), and its two main components, withaferin A and withanolide A, on the main inhibitory receptors in the central nervous system: ionotropic GABAA receptors.

METHODS

The pharmacological activity of aqWS, withaferin A and withanolide A, was tested on native rat brain GABAA channels microtransplanted into Xenopus oocytes and GABAρ1 receptors heterologously expressed in oocytes. The GABAergic activity of aqWS compounds was evaluated by the two-electrode voltage-clamp method and the fingerprint of the extract was done by LC-MS.

RESULTS

Concentration-dependent inward ion currents were elicited by aqWS in microtransplanted oocytes with an EC50 equivalent to 4.7 mg/mL and a Hill coefficient (nH) of 1.6. The GABAA receptor antagonist bicuculline blocked these currents. Our results show that aqWS activated inotropic GABAA channels but with lower efficacy compared to the endogenous agonist GABA. We also demonstrate for first time that aqWS is a potent agonist of GABAρ1 receptors. GABAρ1 receptors were 27 fold more sensitive to aqWS than GABAA receptors. Furthermore, aqWS activated GABAρ1 receptors eliciting maximum currents that were no significantly different to those produced by GABA (paired t-test; p=0.533). The differential activity on GABAA and GABA ρ1 receptors and the reported lack of significant GABA presence in WS root extract indicates that the GABAergic activity of aqWS is not mediated by GABA. WS main active components, witaferin A and withanolide A, were tested to determine if they were responsible for the activation of the GABA receptors. Neither compound activated GABAA nor GABAρ1 receptors, suggesting that other constituent/s in WS are responsible for GABAA receptor mediated responses.

CONCLUSIONS

Our results provide evidence indicating that key constituents in WS may have an important role in the development of pharmacological treatments for neurological disorders associated with GABAergic signaling dysfunction such as general anxiety disorders, sleep disturbances, muscle spasms, and seizures. In addition, the differential activation of GABA receptor subtypes elucidates a potential mechanism by which WS accomplishes its reported adaptogenic properties.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge