Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Food Science 2013-Feb

Effect of adulteration versus storage on volatiles in unifloral honeys from different floral sources and locations.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Amal Agila
Sheryl Barringer

キーワード

概要

High fructose corn syrup (HFCS) was added at 5% to 40% to Indiana wildflower honey and added at 40% to Ohio and Indiana honeys from blueberry, star thistle, clover and wildflower, and an unknown source to simulate honey adulteration. Unadulterated honeys were also stored at 37 ºC from 1 to 6 mo. The volatile composition was measured by Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). Most volatiles decreased in concentration with both increasing HFCS and storage time. Furfural significantly increased in concentration in all adulterated honeys and 1,3-butanediol, acetonitrile, and heptane in some adulterated honeys. During storage, the volatiles that increased were maltol, furfural, 5-methylfurfural, and 5-hydroxymethyl furfural in all honeys and also acetic acid and 1-octen-3-ol levels in some honeys. Soft independent modeling by class analogy (SIMCA) was used to differentiate the volatile profiles of adulterated honeys from fresh and stored honeys. The volatile profiles of honeys in accelerated storage for up to 4 mo and the honeys adulterated with 40% HFCS were significantly different. Acetic acid had the most discriminating power in Ohio star thistle and blueberry honeys and unknown honey while furfural had the greatest discriminating power in Indiana blueberry, star thistle, and clover honeys. Adulteration and storage of honey both reduced the volatile levels, but since they changed the volatile composition of the fresh honey differently, SIMCA was able to differentiate adulteration from storage.

CONCLUSIONS

Analysis of adulterated and stored honeys determined that both decrease volatile levels, and no clear indicator volatiles were found. However, SIMCA can be used to distinguish the volatile profiles of fresh or stored honeys, from adulterated honeys.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge