Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Respiratory Cell and Molecular Biology 2002-Mar

Elastolysis by proteinase 3 and its inhibition by alpha(1)-proteinase inhibitor: a mechanism for the incomplete inhibition of ongoing elastolysis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Qi-Long Ying
Sanford R Simon

キーワード

概要

An excess of proteinase 3 (Pr3) is an assumed risk factor for elastin loss in chronic obstructive pulmonary disease. This study compared the degradation of [(14)C]elastin by Pr3 and its inhibition by alpha(1)-proteinase inhibitor (alpha(1)-PI) with the analogous reactions involving two other neutrophil serine proteases, human leukocyte elastase (HLE) and cathepsin G (CatG). The elastolytic rate catalyzed by Pr3 was estimated to be half of that of CatG and one-eighth of that of HLE. Evidence was obtained that indicated that absorption of Pr3 by the substrate was much less than that of HLE or CatG, and that the majority of absorbed Pr3 was highly mobile. These properties are consistent with the observation that elastolysis by Pr3 was almost completely and stoichiometrically inhibited by alpha(1)-PI even under conditions in which the protease had been preincubated with the substrate. In contrast, alpha(1)-PI in large molar excess was unable to inhibit completely ongoing elastolysis of the same substrate by HLE or CatG. An interfacial nonisotropic reaction mechanism has been proposed to address the incomplete inhibition of ongoing elastolysis. Pr3 was identified as being the most abundant neutrophil serine protease. However, two findings reported here, namely the low rate of elastolysis by Pr3 and the high efficacy of alpha(1)-PI against ongoing elastolysis by Pr3, imply that Pr3 might not necessarily be a major contributor to neutrophil-mediated elastin loss.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge