Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Neurology 2016-Sep

Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Barbara S Reinboth
Christian Köster
Hanna Abberger
Sebastian Prager
Ivo Bendix
Ursula Felderhoff-Müser
Josephine Herz

キーワード

概要

Hypothermia treatment (HT) is the only formally endorsed treatment recommended for hypoxic-ischemic encephalopathy (HIE). However, its success in protecting against brain injury is limited with a number to treat of 7-8. The identification of the target mechanisms of HIE in combination with HT will help to explain ineffective therapy outcomes but also requires stable experimental models in order to establish further neuroprotective therapies. Despite clinical and experimental indications for an endogenous thermoregulatory response to HIE, the potential effects on HIE-induced brain injury have largely been neglected in pre-clinical studies. In the present study we analyzed gray and white matter injury and neurobehavioral outcome in neonatal mice considering the endogenous thermoregulatory response during HIE combined with HT. HIE was induced in postnatal day (PND) 9 C57BL/6 mice through occlusion of the right common carotid artery followed by one hour of hypoxia. Hypoxia was performed at 8% or 10% oxygen (O2) at two different temperatures based on the nesting body core temperature. Using the model which mimics the clinical situation most closely, i.e. through maintenance of the nesting temperature during hypoxia we compared two mild HT protocols (rectal temperature difference 3°C for 4h), initiated either immediately after HIE or with delay of 2h. Injury was determined by histology, immunohistochemistry and western blot analyses at PND 16 and PND 51. Functional outcome was evaluated by Rota Rod, Elevated Plus Maze, Open Field and Novel Object Recognition testing at PND 30-PND 36 and PND 44-PND 50. We show that HIE modeling in neonatal mice is associated with a significant endogenous drop in body core temperature by 2°C resulting in profound neuroprotection, expressed by reduced neuropathological injury scores, reduced loss of neurons, axonal structures, myelin and decreased astrogliosis. Immediately applied post-hypoxic HT revealed slight advantages over a delayed onset of therapy on short- and long-term histological outcome demonstrated by reduced neuropathological injury scores and preservation of hippocampal structures. However, depending on the brain region analyzed neuroprotective effects were similar or even reduced compared to protection by endogenous cooling during HIE modeling. Moreover, long-term neurobehavioral outcome was only partially improved for motoric function (i.e. Rota Rod performance and rearing activity) while cognitive deficits (i.e. novel object recognition) remained unchanged. These findings emphasize the need to maintain the nesting temperature during the initiation of the pathological insult and highlight the urgency to develop and assess new adjuvant therapies for HT in well-defined experimental models.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge