Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2011-Jul

Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Hongbo Gao
Yongxia Jia
Shirong Guo
Guiyun Lv
Tian Wang
Li Juan

キーワード

概要

We investigated the effects of short-term root-zone hypoxic stress and exogenous calcium application or deficiency in an anoxic nutrient solution on nitrogen metabolism in the roots of the muskmelon cultivar Xiyu No. 1. Seedlings grown in the nutrient solution under hypoxic stress for 6d displayed significantly reduced plant growth and soluble protein concentrations. However, NO₃⁻ uptake rate and activities of nitrate reductase and glutamate synthase were significantly increased. We also found higher amounts of nitrate, ammonium, amino acids, heat-stable proteins, polyamines, H₂O₂, as well as higher polyamine oxidase activity in the roots. In comparison to the reactions seen under hypoxic stress, exogenous calcium application led to a marked increase in plant weights, photosynthesis parameters, NO₃⁻ uptake rate and contents of nitrate, ammonium, amino acids (e.g., glutamic acid, proline, glycine, cystine, γ-aminobutyric acid), soluble and heat-stable proteins, free spermine, and insoluble bound polyamines. Meanwhile, exogenous calcium application resulted in significantly increased activities for nitrate reductase, glutamine synthetase, and glutamate synthase but decreased activities for diamine and polyamine oxidase, as well as lower H₂O₂ content in roots during exposure to hypoxia. However, calcium deficiency in the nutrient solution decreased plant weight, photosynthesis parameters, NO₃⁻ reduction, amino acids (e.g., alanine, aspartic acid, glutamic acid, γ-aminobutyric acid), protein, all polyamines except for free putrescine, and the activities of glutamate synthase and glutamine synthetase. Additionally, there was an increase in the NO₃⁻ uptake rate, polyamine oxidase activity and H₂O₂ contents under hypoxia-Ca. Simultaneously, exogenous calcium had little effect on nitrate absorption and transformation, photosynthetic parameters, and plant growth under normoxic conditions. These results suggest that calcium confers short-term hypoxia tolerance in muskmelon, most likely by promoting nitrate uptake and accelerating its transformation into amino acids, heat-stable proteins or polyamines, as well as by decreasing polyamine degradation in muskmelon seedlings.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge