Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2019-Jun

Exogenous oestradiol benzoate induces male mice azoospermia through modulation of oxidative stress and testicular metabolic cooperation.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Jianghua Le
Xiaocan Lei
Yanping Ren
Zhipeng Li
Haoyan Tu
Fangya Ding
Xiaodong Yi
Yi Zhou
Qingyou Liu
Shun Zhang

キーワード

概要

In most cases, exogenous oestradiol benzoate (EB) inhibits spermatogenesis, however, the mechanism underlying this process has not been fully elucidated. The present study investigated the effect of EB on redox equilibrium and glycometabolism in mouse testes. Male Kunming mice were divided into 3 groups and injected with 0, 5 and 10 mg/kg EB, respectively. Histological analysis revealed no sperm and far fewer spermatogenic cells in the testes of EB‑treated mice. Additionally, transmission electron microscopy revealed that mitochondria in Sertoli cells were transformed to vacuoles with irregular cristae in the EB‑treated group. EB also significantly decreased the activities and mRNA expression of catalase, superoxide dismutase, and glutathione peroxidase and increased the activity of nitric oxide synthase and nitric oxide concentration in the testes compared with the control. These results indicated that oxidative damage was caused by EB treatment. With regard to glycometabolism, ATP content and activities of hexokinase and pyruvate kinase were significantly reduced in the EB‑treated group. Although glucose and pyruvate concentrations were significantly increased by EB treatment, levels of lactate, the main energy source of spermatogenic cells, were unchanged. Monocarboxylate transporter 2 (MCT2) and MCT4, which are responsible for lactate transportation, were downregulated by EB. In conclusion, the results of the present study indicated that azoospermia induced by EB in male mice was associated with oxidative damage and the disorder of testicular metabolic cooperation.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge