Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2011-Jun

First Report of Juneberry Rust Caused by Gymnosporangium nelsonii on Juneberry in Michigan.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
A Schilder
E Lizotte
H Yun
L Dixon
L Castlebury

キーワード

概要

Amelanchier alnifolia (Nutt.) Nutt. ex M. Roem., commonly known as juneberry or Saskatoon serviceberry, was historically a widely used prairie fruit that is native to the Northern Great Plains, southern Yukon and Northwest Territories (4). While juneberry is an important fruit crop in the prairie provinces of Canada, small commercial plantings also occur throughout the northern United States (2), including Michigan. On July 18, 2009, severe rust symptoms were observed on plants in a 2-year-old field of A. alnifolia 'Northline' in Northport, MI. The plants had been sourced as seedlings from a nursery in Alberta, Canada in 2007. Signs and symptoms were present on fruits and leaves on virtually all of the plants. Symptomatic fruit were still immature, and on average, more than 70% of the fruit surface was covered with tubular, whitish aecia with conspicuous orange aeciospores. Portions of twigs also showed fusiform swellings (1 to 3 cm long) covered with aecia. Aecia were hypophyllous, fructicolous and caulicolous, roestelioid, and 2 to 4 mm high. The peridium was cylindric and tapering toward the apex, dehiscent at the apex, retaining a tubular shape for a long time and at times becoming lacerated on the sides with age. Peridial cells were linear rhomboidal, 50 to 105 μm long, hyaline to brownish, outer walls smooth, inner walls with small papillae, and side walls delicately verrucose-rugose with elongate papillae having variable lengths. Aeciospores were globoid, 20 to 35 × 25 to 38 μm (average 30.7 × 32.5 μm), orange to cinnamon brown, and densely verrucose with walls 2.5 to 3.5 μm thick. On the basis of these morphological characters, the host, and comparison with a reference specimen (BPI 122010), the pathogen was identified as Gymnosporangium nelsonii Arthur (1,3). The 5' region of the 28S rDNA was sequenced (GenBank Accession No. HM591299.1), confirming the identification as a species of Gymnosporangium, one distinct from previously sequenced specimens available in GenBank. The specimen has been deposited at the U.S. National Fungus Collections (BPI 880671 and 880709). Four other species found previously on Amelanchier spp. in the Midwest differ as follows: G. clavipes and G. clavariiforme have verrucose peridial cells and different 28S rDNA sequences; G. nidus-avis has rugose peridial cells; and G. corniculans has cornute peridia that dehisce from lateral slits while apices remain intact and verrucose peridial walls with verrucae on the side walls (1). The infection was likely caused by basidiospores originating from telia on Juniperus spp. in the area surrounding the field. However, no telia of G. nelsonii were found on junipers in the immediate vicinity. To our knowledge, this is the first report of G. nelsonii on juneberry in Michigan and the Midwest. Because of the devastating impact of this disease on fruit quality, fungicide programs have been devised for disease control and were effective in 2010. Juneberry growers in the Midwest need to be aware of this disease and monitor their crop carefully for symptoms and signs. References: (1) F. D. Kern. A Revised Taxonomic Account of Gymnosporangium. Pennsylvania State University Press, University Park, 1973. (2) K. Laughlin et al. Juneberry for Commercial and Home Use on the Northern Great Plains. North Dakota State University, Fargo 1996. (3) S. K. Lee and M. Kakishima. Mycoscience 40:121, 1999. (4) G. Mazza and C. G. Davidson. Page 516 in: New Crops. Wiley, New York, 1993.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge