Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2011-Dec

First Report of Phoma herbarum on Field Pea (Pisum sativum) in Australia.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Y Li
M You
T Khan
P Finnegan
M Barbetti

キーワード

概要

Black spot disease on field pea (Pisum sativum) in Australia is generally caused by one or more of the four fungi: Mycosphaerella pinodes (anamorph Ascochyta pinodes), Phoma medicaginis var. pinodella (synonym Phoma pinodella), Ascochyta pisi, and Phoma koolunga (1,2,4). However, in 2010 from a field pea blackspot disease screening nursery at Medina, Western Australia, approximately 25% of isolates were a Phoma sp. that was morphologically different to Phoma spp. previously reported on field pea in Western Australia, while the remaining 75% of isolates were either M. pinodes or P. medicaginis var. pinodella. Single-spore isolations of 23 isolates of this Phoma sp. were made onto potato dextrose agar. A PCR-based assay with the TW81 and AB28 primers was used to amplify from the 3' end of 16S rDNA, across ITS1, 5.8S rDNA, and ITS2 to the 5' end of the 28S rDNA. The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. In each case, the sequence had ≥99% nucleotide identity with the corresponding sequence in GenBank for P. herbarum. Isolates also showed morphological similarities to P. herbarum as described in other reports (e.g., 3). The relevant information for a representative isolate has been lodged in GenBank (Accession No. JN247437). The same primers were used by Davidson et al. (2) to identify P. koolunga, but none of our 23 isolates were P. koolunga. A conidial suspension of 107 conidia ml-1 from a single-spore culture was spray inoculated onto foliage of 10-day-old Pisum sativum cv. Dundale plants maintained under >90% relative humidity conditions for 72 h postinoculation. Symptoms evident by 11 days postinoculation consisted of pale brown lesions that were mostly 1.5 to 2 mm long and 1 to 1.5 mm wide. Approximately 50% of lesions showed a distinct chlorotic halo extending 1 to 2 mm outside the boundary of the lesion. P. herbarum was readily reisolated from infected foliage. A culture of this representative isolate has been lodged in the Western Australian Culture Collection Herbarium maintained at the Department of Agriculture and Food Western Australia (Accession No. WAC13499). Outside of Australia, P. herbarum, while generally considered a soilborne opportunistic pathogen, has been reported on a wide range of species, including field pea (3). Molecular analysis of historical isolates collected from field pea in Western Australia, mostly in the late 1980s, did not show any incidence of P. herbarum, despite this fungus being reported on alfalfa (Medicago sativa) and soybean (Glycine max) in Western Australia in 1985 (Australian Plant Pest Database). In Western Australia, this fungus has also been recorded on a Protea sp. in 1991 and on Arabian pea (Bituminaria bituminosa) in 2010 (Australian Plant Pest Database). To our knowledge, this is the first report of P. herbarum as a pathogen on field pea in Australia. These previous reports of P. herbarum on other hosts in Western Australia and the wide host range of P. herbarum together suggest the potential for this fungus to be a pathogen on a wider range of genera/species than field pea. References: (1) T. W. Bretag and M. Ramsey. Page 24 in: Compendium of Pea Diseases and Pests. 2nd ed. The American Phytopathologic Society, St Paul, MN, 2001. (2) J. A. Davidson et al. Mycologica 101:120, 2009. (3) G. L. Kinsey. Phoma herbarum. No 1501. IMI Descriptions of Fungi and Bacteria, 2002. (4) T. L. Peever et al. Mycologia 99:59, 2007.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge