Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2009-May

Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Xian-qing Mao
Feng Yu
Nian Wang
Yong Wu
Feng Zou
Ke Wu
Min Liu
Jing-ping Ouyang

キーワード

概要

Our previous studies found that Astragalus polysaccharide (APS) exerts insulin-sensitizing and hypoglycemic activities in type 2 diabetic (T2DM) rats. The present study was designed to further confirm the hypoglycemic effect of APS and to investigate its possible mechanism underlying the improvement of insulin resistance in vivo and in vitro. Diet-induced insulin resistant C57BL/6J mice treated with or without APS (orally, 700 mg/kg/d) for 8 weeks were analyzed and compared. Simultaneously, an insulin resistant C(2)C(12) cell model and an ER stressed HepG2 cell model were established and incubated with or without APS (200 microg/ml) for 24h respectively. Systematic insulin sensitivity was measured with an insulin-tolerance test (ITT) and an homeostasis model assessment (HOMA IR) index. Metabolic stress variation was analyzed for biochemical parameters and pathological variations. The expression and activity of protein tyrosine phosphatase 1B (PTP1B), which plays a very important role in insulin signaling and in the ER stress response, was measured by immunoprecipitation and Western blot. The ER stress response was analyzed through XBP1 transcription and splicing by real-time PCR. APS could alleviate insulin resistance and ER stress induced by high glucose in vivo and in vitro, respectively. The hyperglycemia, hypolipemia, and hyperinsulinemia status were controlled with APS therapy. Insulin action in the liver of insulin resistant mice was restored significantly with APS administration. APS enhanced adaptive capacity of the ER and promoted insulin signaling by the inhibition of the expression and activity of PTP1B. Furthermore, the anti-obesity effect and hypolipidemia effects of APS were probably due partly to decreasing the leptin resistance of mice, which would positively couple with the normalization of plasma insulin levels. We have shown that APS has beneficial effects on insulin resistance and hyperglycemia. The mechanism is related to the alleviation of ER stress and insulin resistance under hyperglycemia conditions.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge