Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Biotechnology 2015-May

Influence of oxygen deficiency and the role of specific amino acids in cryopreservation of garlic shoot tips.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Karthikeyan Subbarayan
Hardy Rolletschek
Angelika Senula
Kamatchi Ulagappan
Mohammad-Reza Hajirezaei
E R Joachim Keller

キーワード

概要

BACKGROUND

Garlic has lost its ability to form seeds in the course of its domestication. Therefore, the germplasm storage via cryopreservation is increasingly applied. The progression of the various steps within the cryopreservation procedure is accompanied by declining survival rates of the explants. Much of the recent work on cryo-stress has been focussed on osmotic and cold stress components. However, two decades after invention of garlic cryopreservation, the function of metabolites and oxygen in and around the cryopreserved tissues is still largely obscure.

METHODS

In this study, hypoxia was characterized in cryopreservation of garlic with oxygen sensors and amino acid metabolism. Furthermore, malondialdehyde, soluble sugars and ammonium were quantified to demonstrate the influence of cryo-stress in declining survival rates.

RESULTS

To better understand the possible reasons for a reduction in the survival rate at the subsequent steps of cryopreservation, the concentration of amino acids, ammonium, γ-aminobutyric acid (GABA), soluble sugars, malondialdehyde (MDA), and oxygen were measured in garlic shoot tips undergoing cryopreservation. Using microsensors, a very low oxygen concentration (<0.1 μM) was detected within the central meristem region of the shoot apex. When apices were immersed in cryoprotectant solution, the well-oxygenated peripheral regions (foliage leaf bases) became likewise hypoxic within a few minutes, probably resulting from strongly restricted gaseous diffusion.

CONCLUSIONS

Tissue level oxygen measurements supported the occurrence of hypoxia while biochemical analysis indicated adaptive responses, in particular the modulation in alanine and glutamate metabolism. The possible role of serine and glycine metabolism during cryopreservation is also discussed.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge