Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2017

Inhibition of HMGB1 protects the retina from ischemia-reperfusion, as well as reduces insulin resistance proteins.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Li Liu
Youde Jiang
Jena J Steinle

キーワード

概要

The role of inflammation in diabetic retinal amage is well accepted. While a number of cytokines and inflammatory mediators are responsible for these changes, upstream regulators are less well studied. Additionally, the role for these upstream mediators in retinal health is unclear. In this study, we hypothesized that inhibition of high mobility group box 1 (HMGB1) could restore normal insulin signaling in retinal endothelial cells (REC) grown in high glucose, as well as protect the retina against ischemia/reperfusion (I/R)-induced retinal damage. REC were grown in normal (5mM) or high glucose (25mM) and treated with Box A or glycyrrhizin, two different HMGB1 inhibitors. Western blotting was done for HMGB1, toll-like receptor 4 (TLR4), insulin receptor, insulin receptor substrate-1 (IRS-1), and Akt. ELISA analyses were done for tumor necrosis factor alpha (TNFα) and cleaved caspase 3. In addition, C57/B6 mice were treated with glycyrrhizin, both before and after ocular I/R. Two days following I/R, retinal sections were processed for neuronal changes, while vascular damage was measured at 10 days post-I/R. Results demonstrate that both Box A and glycyrrhizin reduced HMGB1, TLR4, and TNFα levels in REC grown in high glucose. This led to reduced cleavage of caspase 3 and IRS-1Ser307 phosphorylation, and increased insulin receptor and Akt phosphorylation. Glycyrrhizin treatment significantly reduced loss of retinal thickness and degenerate capillary numbers in mice exposed to I/R. Taken together, these results suggest that inhibition of HMGB1 can reduce retinal insulin resistance, as well as protect the retina against I/R-induced damage.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge