Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Electrocardiology

Karhunen-Loève representation distinguishes ST-T wave morphology differences in emergency department chest pain patients with non-ST-elevation myocardial infarction versus nonacute coronary syndrome.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Daniel M Schindler
Robert L Lux
Vladimir Shusterman
Barbara J Drew

キーワード

概要

Patients presenting to the emergency department with chest pain are triaged to early reperfusion therapies based on their initial 12-lead electrocardiogram (ECG). The standard 12-lead ECG lacks sensitivity to detect acute myocardial infarction (AMI). Electrocardiographic diagnosis of non-ST-elevation myocardial infarction (non-STEMI) is especially difficult and is delayed until cardiac biomarkers turn positive, indicating onset of myocardial necrosis.

OBJECTIVE

The purpose of this analysis was to extract global ST-T waveform features from patients with chest pain, compare these features in patients with and without AMI, and then identify features that distinguish diagnostic categories.

METHODS

This is a secondary analysis of data from the Ischemia Monitoring and Mapping in the Emergency Department in Appropriate Triage and Evaluation of Acute Ischemic Myocardium study, a prospective clinical trial in which patients were attached to Holter monitor devices to obtain 24 hours of continuous ECG data. Digital recordings from 176 patients were analyzed: 88 with AMI (STEMI and non-STEMI) and 88 without AMI or unstable angina. The non-acute coronary syndrome (ACS) group was further subdivided into those with non-ACS cardiac conditions such as heart failure and those without cardiac disease who had noncardiac chest pain. For each patient, 10 consecutive waveforms were obtained within the first 120 minutes of emergency department presentation. The waveforms were time-aligned to the QRS, signal-averaged, baseline-adjusted. ST-T waveforms were complied according to diagnostic category and pooled for further analysis. Eigenvector-lead feature coefficients (Karhunen-Loève [K-L] coefficients) were obtained for each patient by taking the dot product of the ST-T wave (ST segment or entire waveform) and the first 3 common eigenvectors, producing 24 K-L coefficients. Cumulative probability distribution function curves were plotted for each diagnostic category. Statistical significance of category coefficient distribution differences was determined. Multinomial regression was used to assess accuracy of feature coefficients to predict diagnostic category.

RESULTS

Non-STEMI and non-ACS cardiac category K-L coefficient curves were statistically different in 11 of 24 feature curves (P < .001-.047). ST-segment (50 samples) coefficients predicted non-ACS cardiac patients 11.5% more often (P = .02) than those derived from the entire ST-T wave.

CONCLUSIONS

Patients diagnosed with non-STEMI have distinct distribution of K-L coefficients compared with non-ACS cardiac patients. Coefficients from the first 50 samples of the ST-T wave (ST segment) better predict diagnostic category than do coefficients derived from the entire ST-T wave. Karhunen-Loève coefficient feature analysis may provide early diagnostic information to distinguish patients with non-STEMI vs non-ACS cardiac patients.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge