Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 1986-Apr

Labelling of chlorophylls and precursors by [2-14C]glycine and 2-[1-14C]oxoglutarate in Rhodopseudomonas spheroides and Zea mays. Resolution of the C5 and Shemin pathways of 5-aminolaevulinate biosynthesis by thin-layer radiochromatography.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
R J Porra

キーワード

概要

The C-5 of 5-aminolaevulinate, a tetrapyrrole precursor which accumulates when inhibitory laevulinate is present, is derived from either the C-2 of glycine by the 5-aminolaevulinate-synthase-mediated Shemin pathway or the C-1 of 2-oxoglutarate by the C5 pathway. Thin-layer-radiochromatographic procedures are described for determining whether [2-14C]glycine or 2-[1-14C]oxoglutarate labelled the macrocycle of bacteriochlorophyll a, in addition to or rather than the methyl ester or phytyl ester moieties of the side-chains. The method was also used for detecting whether the same substrates label the formaldehyde (C-5) or the succinate (C-1 to C-4) fragments, obtained by periodate cleavage of 5-aminolaevulinate. These methods therefore can readily distinguish between the Shemin and C5 pathways as was demonstrated by using Rhodopseudomonas spheroides and Zea mays (maize), respectively, as examples of each pathway. Both [2-14C]glycine and, to a lesser extent 2-[1-14C]oxoglutarate labelled the macrocycle of bacteriochlorophyll a formed during adaptation of respiring R. spheroides cells to photosynthetic (anaerobic, illuminated) conditions. This and earlier evidence suggested augmentation of the Shemin pathway by a minor C5 pathway contribution. The present studies revealed only Shemin pathway activity: with laevulinate present, [2-14C]glycine formed 5-[5-14C]aminolaevulinate as proved by H14CHO production during periodate cleavage. These methods were sufficiently sensitive also to detect the incorporation of 14CO2, from degradation of either substrate, into 5-aminolaevulinate via the Shemin pathway thus labelling the succinate fragment produced with periodate: this explains bacteriochlorophyll a labelling by 2-[1-14C]oxoglutarate and proves double labelling of 5-aminolaevulinate by [2-14C]glycine. The same techniques were applied to etiolated maize leaves exposed to aerobic illuminated conditions with laevulinate and either 2-[1-14C]oxoglutarate or [2-14C]glycine as substrates. Only the C5 pathway was detected: 2-[1-14C]oxoglutarate was converted to 5-[5-14C]aminolaevulinate, which yielded H14CHO on periodate cleavage. This is not inconsistent with our earlier 13C-NMR studies [Porra, R.J., Klein, O. and Wright, P. E. (1983) Eur. J. Biochem. 130, 509-516] showing that the C5 pathway formed all the 5-aminolaevulinate for chlorophyll biosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge