Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Medicine 2018-Aug

Luteolin induces myelodysplastic syndrome‑derived cell apoptosis via the p53‑dependent mitochondrial signaling pathway mediated by reactive oxygen species.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Weimin Dong
Yan Lin
Yang Cao
Yue Liu
Xiaobao Xie
Weiying Gu

キーワード

概要

Luteolin, a common dietary flavonoid, induces the apoptosis of cells in several types of cancer. However, its role in myelodysplastic syndrome (MDS) and the potential underlying mechanisms remain to be elucidated. To evaluate the potential benefit and underlying mechanisms of luteolin in MDS cells, the viability of SKM‑1 cells and primary bone marrow (PBM) mononuclear cells from patients with intermediate‑ or high‑risk MDS were assessed using a Cell Counting Kit‑8 assay. The apoptotic features of cell morphology were assessed using Wright‑Giemsa staining, DNA fragmentation was analyzed by agarose gel electrophoresis, and the extent of apoptosis was quantified by flow cytometry (FCM). Reactive oxygen species (ROS) were measured by FCM with 2,7‑dichlorodihydrofluorescein diacetate staining and mitochondrial membrane potential (ΔΨm) was determined using 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethylbenzimidazolylcarbocyanine iodide staining. Caspase activity was detected using a fluorometric protease assay. Furthermore, the effects of luteolin on the expression of apoptosis‑related proteins were analyzed using western blot analysis. The resulting data revealed that luteolin significantly inhibited the proliferation of SKM‑1 cells in vitro, and its half maximal inhibitory concentration was 139.41 µM at 24 h and 23.95 µM at 72 h. Luteolin also markedly inhibited the proliferation of mononuclear cells from patients with intermediate‑ or high‑risk MDS. Luteolin suppressed cell proliferation, mainly as a result of the induction of apoptosis, as demonstrated by typical apoptotic morphological features, the ladder pattern of genomic DNA fragmentation, and the results of FCM using Annexin V‑FITC/PI double staining. It was also found that short‑term exposure of SKM‑1 cells to luteolin led to a marked increase in the accumulation of ROS. The increased intracellular level of ROS appeared to induce the activation of p53 and elevate the B‑cell lymphoma 2 (Bcl‑2)‑associated X protein/Bcl‑2 ratio, which modulates ΔΨm and triggers the release of cytochrome c, and may increase the activities of apoptotic protease activating factor 1, caspase‑3, ‑8 and ‑9 to further trigger the destruction of structural and specific proteins and thereby cell apoptosis. Notably, the inhibition of ROS generation by the antioxidant N‑acetyl‑L‑cysteine significantly attenuated the luteolin‑induced loss of ΔΨm and activities of caspase‑3, ‑8 and ‑9. These data suggested that luteolin exerts its pro‑apoptotic action partly through the p53‑dependent mitochondrial signaling pathway mediated by intracellular ROS, which provides a promising therapeutic candidate for patients with MDS.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge