Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 2009-Mar

Neuroprotective effect of an antioxidant, lutein, during retinal inflammation.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Mariko Sasaki
Yoko Ozawa
Toshihide Kurihara
Kousuke Noda
Yutaka Imamura
Saori Kobayashi
Susumu Ishida
Kazuo Tsubota

キーワード

概要

OBJECTIVE

Lutein has been the focus of recent study as a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate, with the use of a mouse endotoxin-induced uveitis (EIU) model, the neuroprotective effects of lutein against retinal neural damage caused by inflammation.

METHODS

EIU was induced by intraperitoneal injection of lipopolysaccharide (LPS). Each animal was given a subcutaneous injection of lutein or vehicle three times: concurrently with and 3 hours before and after the LPS injection. Analysis was carried out 24 hours after EIU induction. Levels of rhodopsin protein and STAT3 activation were analyzed by immunoblotting. Lengths of the outer segments of the photoreceptor cells were measured. Dark-adapted full-field electroretinograms were recorded. Oxidative stress in the retina was analyzed by dihydroethidium and fluorescent probe. Expression of glial fibrillary acidic protein (GFAP) was shown immunohistochemically.

RESULTS

The EIU-induced decrease in rhodopsin expression followed by shortening of the outer segments and reduction in a-wave amplitude were prevented by lutein treatment. Levels of STAT3 activation, downstream of inflammatory cytokine signals, and reactive oxygen species (ROS), which are both upregulated during EIU, were reduced by lutein. Pathologic change of Müller glial cells, represented by GFAP expression, was also prevented by lutein.

CONCLUSIONS

The present data revealed that the antioxidant lutein was neuroprotective during EIU, suggesting a potential approach for suppressing retinal neural damage during inflammation.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge