Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Environmental Research and Public Health 2019-06

Physiological and Biochemical Responses of Pearl Millet (Pennisetum glaucum L.) Seedlings Exposed to Silver Nitrate (AgNO3) and Silver Nanoparticles (AgNPs).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Imran Khan
Muhammad Raza
Muhammad Bin Khalid
Samrah Awan
Naveed Raja
Xinquan Zhang
Sun Min
Bing Wu
Muhammad Hassan
Linkai Huang

キーワード

概要

: A rapid and continuous growth of silver nanoparticles (AgNPs) via their precursor "silver nitrate" (AgNO3) has increased their environmental risk because of their unsafe discharge into the surrounding environment. Both have damaging effects on plants and induce oxidative stress. In the present study, differential responses in the morpho-physiological and biochemical profiles of P. glaucum (L.) seedlings exposed to various doses of AgNPs and AgNO3 were studied. Both have forms of Ag accelerated the reactive oxygen species (ROS) production, which adversely affected the membrane stability as a result of their enhanced accumulation, and resulted in a significant reduction in growth, that is, root length, shoot length, fresh and dry biomass, and relative water content. AgNO3 possessed a higher degree of toxicity owing to its higher accumulation than AgNPs, and induced changes in the antioxidants' enzyme activity: superoxide dismutase (SOD), peroxidase (POD), catalases (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) activity, as well as proline content, total phenolic, and total flavonoids contents (TFCs) under all tested treatments (mM). A decline in photosynthetic pigments such as total chlorophyll content and carotenoid content and alterations in quantum yield (Fv/Fm), photochemical (qP), and non-photochemical quenching (NPQ) indicated the blockage of the electron transport chain (ETC), which led to a significant inhibition of photosynthesis. Interestingly, seedlings exposed to AgNPs showed less damaging effects on P. glaucum (L.) seedlings, resulting in relatively lower oxidative stress in contrast to AgNO3. Our results revealed that AgNO3 and AgNPs possessed differential phytotoxic effects on P. glaucum (L.) seedlings, including their mechanism of uptake, translocation, and action. The present findings may be useful in phytotoxic research to design strategies that minimize the adverse effects of AgNPs and AgNO3 on crops, especially in the agriculture sector.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge