Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2006-Mar

Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
M Alejandra Equiza
Michael E Day
Richard Jagels

キーワード

概要

Polar regions were covered with extensive forests during the Cretaceous and early Tertiary, and supported trees comparable in size and productivity to those of present-day temperate forests. With a winter of total or near darkness and a summer of continuous, low-angle illumination, these temperate, high-latitude forests were characterized by a light regime without a contemporary counterpart. Although maximum irradiances were much lower than at mid-latitudes, the 24-h photoperiod provided similar integrated light flux. Taxodium, Larix and Metasequoia, three genera of deciduous conifers that occurred in paleoarctic wet forests, have extant, closely related descendents. However, the contemporary relative abundance of these genera differs greatly from that in the paleoarctic. To provide insight into attributes that favor competitive success in a continuous-light environment, we subjected saplings of these genera to a natural photoperiod or a 24-h photoperiod and measured gas exchange, chlorophyll fluorescence, non-structural carbohydrate concentrations, biomass production and carbon allocation. Exposure to continuous light significantly decreased photosynthetic capacity and quantum efficiency of photosystem II in Taxodium and Larix, but had minimal influence in Metasequoia. In midsummer, foliar starch concentration substantially increased in both Taxodium and Larix saplings grown in continuous light, which may have contributed to end-product down-regulation of photosynthetic capacity. In contrast, Metasequoia allocated photosynthate to continuous production of new foliar biomass. This difference in carbon allocation may have provided Metasequoia with a two fold advantage in the paleoarctic by minimizing depression of photosynthetic capacity and increasing photosynthetic surface.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge