Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2006

Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Ji-Hong Liu
Kazuyoshi Nada
Chikako Honda
Hiroyasu Kitashiba
Xiao-Peng Wen
Xiao-Ming Pang
Takaya Moriguchi

キーワード

概要

To clarify the involvement of the arginine decarboxylase (ADC) pathway in the salt stress response, the polyamine titre, putrescine biosynthetic gene expression, and enzyme activities were investigated in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] in vitro callus under salt stress, during recovery after stress, and when ADC was inhibited by D-arginine, an inhibitor of ADC. Salt stress (200 mM NaCl) caused an increase in thiobarbituric acid-reactive substances (TBARS) and electrolyte leakage (EL) of the callus, which was accompanied by an increase in free putrescine content, during 7 d of treatment. Conjugated putrescine was also increased, but this increase was limited to the early stage of salt stress. Accumulation of putrescine was in accordance with induction of ADC activity and expression of the apple ADC gene (MdADC). When callus that had been treated with 200 mM NaCl was transferred to fresh medium with (successive stress) or without (recovery) NaCl, TBARS and EL were significantly reduced in the recovery treatment, indicating promotion of formation of new callus cells, compared with the successive stress treatment. Meanwhile, MdADC expression and ADC activity were also decreased in the callus undergoing recovery, whereas those of the callus under successive stress were increased. Ornithine decarboxylase (ODC) activity showed a pattern opposite to that of ADC in these conditions. D-Arginine treatment led to more serious growth impairment than no treatment under salt stress. In addition, accumulation of putrescine, induction of MdADC, and activation of ADC in D-arginine-treated callus were not comparable with those of the untreated callus. Exogenous addition of putrescine could alleviate salt stress in terms of fresh weight increase and EL. All of these findings indicated that the ADC pathway was tightly involved in the salt stress response. Accumulation of putrescine under salt stress, the possible physiological role of putrescine in alleviating stress damage, and involvement of MdADC and ADC in response to salt stress are discussed.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge