Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Nanomedicine

Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with Akebia saponin D-phospholipid complex.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Jinyang Shen
Jianping Bi
Hongli Tian
Ye Jin
Yuan Wang
Xiaolin Yang
Zhonglin Yang
Junping Kou
Fei Li

キーワード

概要

BACKGROUND

Akebia saponin D (ASD) exerts various pharmacological activities but with poor oral bioavailability. In this study, a self-nanoemulsifying drug delivery system (SNEDDS) based on the drug-phospholipid complex technique was developed to improve the oral absorption of ASD.

METHODS

ASD-phospholipid complex (APC) was prepared using a solvent-evaporation method and characterized by infrared spectroscopy, differential scanning calorimetry, morphology observation, and solubility test. Oil and cosurfactant were selected according to their ability to dissolve APC, while surfactant was chosen based on its emulsification efficiency in SNEDDS. Pseudoternary phase diagrams were constructed to determine the optimized APC-SNEDDS formulation, which was characterized by droplet size determination, zeta potential determination, and morphology observation. Robustness to dilution and thermodynamic stability of optimized formulation were also evaluated. Subsequently, pharmacokinetic parameters and oral bioavailability of ASD, APC, and APC-SNEDDS were investigated in rats.

RESULTS

The liposolubility significantly increased 11.4-fold after formation of APC, which was verified by the solubility test in n-octanol. Peceol (Glyceryl monooleate [type 40]), Cremophor® EL (Polyoxyl 35 castor oil), and Transcutol HP (Diethylene glycol monoethyl ether) were selected as oil, surfactant, and cosurfactant, respectively. The optimal formulation was composed of Glyceryl monooleate (type 40), Polyoxyl 35 castor oil, Diethylene glycol monoethyl ether, and APC (1:4.5:4.5:1.74, w/w/w/w), which showed a particle size of 148.0±2.7 nm and a zeta potential of -13.7±0.92 mV after dilution with distilled water at a ratio of 1:100 (w/w) and good colloidal stability. Pharmacokinetic studies showed that APC-SNEDDS exhibited a significantly greater Cmax1 (733.4±203.8 ng/mL) than ASD (437.2±174.2 ng/mL), and a greater Cmax2 (985.8±366.6 ng/mL) than ASD (180.5±75.1 ng/mL) and APC (549.7±113.5 ng/mL). Compared with ASD, Tmax1 and Tmax2 were both remarkably shortened by APC-SNEDDS. The oral bioavailability in rats was enhanced significantly to 183.8% and 431.8% by APC and APC-SNEDDS, respectively.

CONCLUSIONS

These results indicated that APC-SNEDDS was a promising drug delivery system to enhance the oral bioavailability of ASD.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge