Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1992-Mar

Proline fed to intact soybean plants influences acetylene reducing activity and content and metabolism of proline in bacteroids.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Y Zhu
G Shearer
D H Kohl

キーワード

概要

Supplying l-proline to the root system of intact soybean (Glycine max [L.] Merr.) plants stimulated acetylene reducing activity to the same extent as did supplying succinate. Feeding l-proline also caused an increase in bacteroid proline dehydrogenase activity that was highly correlated with the increase in acetylene-reducing activity. Twenty-four hours after irrigating with l-proline, endogenous proline content had increased in host cell cytoplasm and bacteroids, about three- and eightfold, respectively. In bacteroids, proline concentration was calculated to be at least 3.5 millimolar. In experiments in which [U-(14)C]l-proline was supplied to uprooted, intact plants incubated in aerated solution, (14)C-labeled products of proline metabolism, as well as [(14)C]proline itself, accumulated in both host cells and bacteroids. When plants were incubated in aerated solutions containing [5-(3)H]l-proline, (3)H-labeled proline was found in host cells and bacteroids. [(3)H] Pyrroline-5-carboxylate was found in bacteroids, but not host cells, after a 2-hour incubation in [5-(3)H]l-proline. When [U-(14)C]l-proline was supplied for 24 hours, a significant amount of [(14)C] pyrroline-5-carboxylate was found in the host cells, in contrast with the results from the shorter incubation in [5-(3)H]proline, although the amount in the host cells was only about half the quantity found in the bacteroids. Taken as a whole, these results indicate that proline crosses both plant and bacterial membranes under the in vivo experimental conditions utilized and are consistent with a significant role for proline as an energy source in support of bacteroid functioning. In spite of the increase in acetylene-reducing activity when proline was supplied to the root system of intact plants, proline application did not rescue stemgirdled plants from loss of acetylene-reducing activity, although succinate application did. This suggests a nonphloem route for succinate, but not proline, from roots to nodules.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge