Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Alcoholism: Clinical and Experimental Research 2001-Apr

Removal of glutathione produces apoptosis and necrosis in HepG2 cells overexpressing CYP2E1.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
D Wu
A I Cederbaum

キーワード

概要

BACKGROUND

Previous studies have shown that addition of ethanol, iron, or arachidonic acid to HepG2 cells expressing CYP2E1 produced a loss in cell viability and caused apoptosis. These effects were enhanced when cellular reduced glutathione (GSH) levels were lowered by treatment with buthionine sulfoximine (BSO). Overexpression of CYP2E1 in HepG2 cells could produce toxicity even in the absence of added toxin after BSO treatment. Studies were carried out to characterize this CYP2E1-and BSO-dependent toxicity.

METHODS

HepG2 cells expressing CYP2E1 were treated with BSO for 1 to 4 days, and various parameters associated with apoptosis and cell viability were assayed.

RESULTS

Treatment of cells expressing CYP2E1 (E47 cells) with BSO resulted in apoptosis as well as necrosis. The apoptosis and necrosis were independent of each other. No toxicity was found with control HepG2 cells or HepG2 cells expressing CYP3A4 instead of CYP2E1 under these conditions. The antioxidant trolox partially prevented the apoptosis and necrosis, whereas diallylsulfide, a CYP2E1 inhibitor, was fully protective. The activity of caspase 3, but not caspases 1, 8, or 9, was increased in the BSO-treated E47 cells, and an inhibitor of caspase 3 prevented apoptosis. Damage to mitochondria appears to play a role in the CYP2E1- and BSO-dependent toxicity, because mitochondrial membrane potential was decreased and cyclosporin A, an inhibitor of the mitochondrial membrane permeability transition, prevented the apoptosis and the necrosis. The fall in membrane potential was prevented by trolox and diallylsulfide, suggesting damage to the mitochondria by CYP2E1-derived reactive oxygen species.

CONCLUSIONS

These results indicate the critical role of GSH in protecting against CYP2E1-mediated oxidative stress and that mitochondria may be a target for CYP2E1-derived reactive oxygen species, and suggest that interactions between CYP2E1, mitochondria, and altered GSH homeostasis may play a role in alcohol-induced liver injury.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge