Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Magnetic Resonance Imaging 1986

Significance of proton relaxation time measurement in brain edema, cerebral infarction and brain tumors.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
S Naruse
Y Horikawa
C Tanaka
K Hirakawa
H Nishikawa
K Yoshizaki

キーワード

概要

We examined the proton relaxation times in vitro in various neurological diseases using experimental and clinical materials, and consequently obtained significant results for making a fundamental analysis of magnetic resonance imaging (MRI) as followings. 1) In the brain edema and cerebral infarction, T1 prolonged and T2 separated into two components, one fast and one slow. Prolongation of T1 referred to the volume of increased water in tissue. The slow component of T2 reflects both the volume and the content of increased edema fluid in tissue. 2) In the edematous brain tissue with the damaged Blood-Brain-Barrier (BBB), the slow component of T2 became shorter after the injection of Mn-EDTA. Paramagnetic ion could be used as an indicator to demonstrate the destruction of BBB in the brain. 3) After the i.v. injection of glycerol, the slow component of T2 became shorter in the edematous brain with the concomitant decrease of water content. The effects of therapeutic drug could be evaluated by the measurement of proton relaxation times. 4) Almost all tumor tissue showed a longer T1 and T2 values than the normal rat brain, and many of them showed two components in T2. It was difficult to determine the histology of tumor tissue by the relaxation time alone because of an overlap of T1 and T2 values occurred among various types of brain tumors. 5) In vivo T1 values of various brain tumor were calculated from the data of MRIs by zero-crossing method, and they were compared with the in vitro T1 values which were measured immediately after the surgical operation. Though the absolute value did not coincide with each other due to differences in magnetic field strength, the tendency of the changes was the same among all kinds of tumors. It is concluded that the fundamental analysis of proton relaxation times is essentially important not only for the study of pathophysiology in many diseases but also for the interpretation of clinical MRI.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge