Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Materials Research - Part B Applied Biomaterials 2004-Aug

The role of implant alignment on stability and particles on periprosthetic osteolysis--A rabbit model of implant failure.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
V L Fornasier
S B Goodman
K Protzner
M Kamel
Y Song
A Shojaci

キーワード

概要

The study objective was to determine the tissue response to polyethylene and/or titanium particles and the role that these play in peri-prosthetic osteolysis in a rabbit model of implant failure. Twenty-two mature rabbits were used. Unilateral tibial arthroplasty was performed on all of them. The test animals received implants that were intentionally rotationally unstable with reference to the host tibia in order to create a model of failure. The test rabbits were divided into three groups. Group 1 consisted of seven rabbits in which only the carrier was implanted. Group 2 consisted of seven rabbits that received only polyethylene particles suspended in the carrier. Group 3 consisted of eight rabbits that received a mixture of polyethylene and titanium alloy particles suspended in the carrier. The rabbits were sacrificed at 6 months post surgery. The entire knee, together with the immediately surrounding soft tissue, was retrieved. The position of the implant in each rabbit was assessed with reference to its alignment to the tibia. The number of inflammatory, foreign-body reactive cells, the presence of neovascularization, edema, and necrosis in the periprosthetic zones were recorded and assessed in a qualitative and semiquantitative manner. Quantitative histomorphometry was used to determine the proportion of implant surface that interfaced with osseous or fibrous tissue. Also assessed was the thickness and maturity of the fibrous tissue and the endosteal remodeling activity in the peri-implant bone counting both osteoclastic and osteoblastic activity. The results showed that implanted particles and misalignment of the implants combined to produce peri-prosthetic bone resorption. Bone resorption was found to be proportional to the degree of misalignment. The animals that received combined polyethylene/titanium particles had a greater degree of foreign-body and inflammatory response with osteolysis than the other groups. The combination of bio-material particles (polyethylene and titanium alloy) produced a greater degree of bone resorption than the single biomaterial particles (polyethylene). The amount of bone resorption surrounding the implant was directly proportional to the degree of misalignment of the implant.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge