Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurochemistry International 2007-May

The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Qi Li
Gang Lu
G E Antonio
Y T Mak
John A Rudd
Ming Fan
David T Yew

キーワード

概要

Spontaneously hypertensive rats (SHR) are considered to represent a genetic animal model for attention-deficit hyperactivity disorder (ADHD). In the present studies, we compared the locomotor activity, learning and memory functions of juvenile male SHR, with age- and gender-matched genetic control Wistar-Kyoto rats (WKY). In addition, we investigated potential differences in brain morphology by magnetic resonance imaging (MRI). In other complimentary studies of the central nervous system, we used real-time PCR to examine the levels of several dopaminergic-related genes, including those coding for the five major subtypes of dopamine receptor (D1, D2, D3, D4 and D5), those coding for enzymes responsible for synthesizing tyrosine hydroxylase and dopamine-beta-hydroxylase, and those coding for the dopamine transporter. Our data revealed that SHR were more active than WKY in the open field (OF) test. Also, SHR appeared less attentive, exhibiting inhibition deficit, but in the absence of memory deficits relative to spatial learning. The MRI studies revealed that SHR had a significantly smaller vermis cerebelli and caudate-putamen (CPu), and there was also a significantly lower level of dopamine D4 receptor gene expression and protein synthesis in the prefrontal cortex (PFC) of SHR. However, there were no significant differences between the expression of other dopaminergic-related genes in the midbrain, prefrontal cortex, temporal cortex, striatum, or amygdala of SHR and WKY. The data are similar to the situation seen in ADHD patients, relative to normal volunteers, and it is possible that the hypo-dopaminergic state involves a down regulation of dopamine D4 receptors, rather than a general down-regulation of catecholamine synthesis. In conclusion, the molecular and behavioural data that we obtained provide new information that may be relevant to understanding ADHD in man.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge