Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Expert Review of Clinical Pharmacology 2011-Jan

Therapeutic applications of organosulfur compounds as novel hydrogen sulfide donors and/or mediators.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Xianfeng Gu
Yi Zhun Zhu

キーワード

概要

Hydrogen sulfide, once considered as toxic gas, is now recognized as an important biological mediator. The deficiency of hydrogen sulfide could lead to various pathological changes, such as arterial and pulmonary hypertension, Alzheimer's disease, gastric mucosal injury and liver cirrhosis. However, excessive production of hydrogen sulfide, by using inorganic hydrogen sulfide donors such as NaHS, may contribute to the pathogenesis of inflammatory diseases, septic shock, cerebral stroke and mental retardation in patients with Down syndrome. Therefore, an increasing interest in organic molecules that are capable of regulating the formation of hydrogen sulfide has extended in recent years. Allium vegetables are one natural source of organic sulfur-containing compounds and have been widely investigated regarding their therapeutic applications, and it has been proven that the ingredients of garlic, such as diallyl disulfide, diallyl trisulfide and S-ally cysteine act as hydrogen sulfide donors or mediators in pharmaceutical studies. In addition, S-propargyl cysteine (ZYZ-802) and S-propyl cysteine, two synthetic cysteine analogs, have been examined and could be used to treat ischemic heart disease via modulation of the hydrogen sulfide pathway. In addition, drugs containing hydrogen sulfide-releasing moieties have been synthesized and widely reported in recent years, such as S-nonsteroidal anti-inflammatory drugs and the derivative of Lawesson's reagents, which exhibit varied biological effects in experiments. As cystathionine β-synthase and cystathionine γ-lyase are the enzymes that are able to catalyze the production of endogenous hydrogen sulfide from cysteine, their inhibitors, such as dl-propylargylglycine and β-cyanoalanine, have been frequently used in studies on the biological mechanism of hydrogen sulfide. All these hydrogen sulfide donors, mediators and inhibitors have provided useful tools in the research of a variety of biological effects and are promising drug candidates of hydrogen sulfide.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge