Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2018-Nov

Tilianin mediates neuroprotection against ischemic injury by attenuating CaMKII-dependent mitochondrion-mediated apoptosis and MAPK/NF-κB signaling.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Hailun Jiang
Jiansong Fang
Jianguo Xing
Linlin Wang
Qian Wang
Yu Wang
Zhuorong Li
Rui Liu

キーワード

概要

OBJECTIVE

Tilianin, a naturally occurring flavonoid glycoside, possesses versatile biological activities including antioxidant, anti-inflammatory, energy collecting and anti-hypoxic effects. Little is known about the mechanisms underlying the effect of tilianin against ischemic injury in neuronal cells. We aimed to determine the potential targets and mechanisms of tilianin treatment behind the crosstalk pathways induced by oxygen-glucose deprivation (OGD).

METHODS

We used an in silico docking model for interaction mode analysis and in vitro models for mechanistic exploration and target verification. Protein changes were measured using cellular immunofluorescence and ELISA techniques.

RESULTS

The ability of tilianin to promote recovery of OGD-induced neurocytotoxic injury was demonstrated by maintenance of cell viability, membrane integrity and nuclear homogeneity. Tilianin treatment was also found to balance the concentrations of proapoptotic and antiapoptotic proteins that had been modified by OGD-induced mitochondrial dysfunction. Of these intersectional cascades, Ca2+/calmodulin-dependent protein kinase II (CaMKII) was found to bind efficiently with tilianin. This presented a certain binding score along with down-regulation of ox-CaMKII and p-CaMKII in SH-SY5Y cells affected by OGD. Importantly, after utilizing KN93, one specific CaMKII inhibitor, tilianin-mediated neuroprotection against OGD was abolished. This effect was accompanied by upregulation of mitochondrial function. Thus, the beneficial effects of tilianin toward mitochondrion-mediated apoptosis and p38/JNK/NF-κB-associated inflammatory pathways were reversed following CaMKII inhibition.

CONCLUSIONS

Our study indicated that attenuation of CaMKII-linked signaling mediated through mitochondria and p38/JNK/NF-κB inflammatory pathways is a key mechanism by which tilianin exerts its neuroprotective effects against cerebral ischemia.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge