Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Cell Factories 2018-Dec

Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Wouter Daniels
Jeroen Bouvin
Tobias Busche
Christian Rückert
Kenneth Simoens
Spyridoula Karamanou
Lieve Van Mellaert
Ólafur Friðjónsson
Bart Nicolai
Anastassios Economou

キーワード

概要

The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein.RNA-seq and [Formula: see text]-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion.Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge