Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2018-Nov

Trichosanthes kirilowii lectin ameliorates streptozocin-induced kidney injury via modulation of the balance between M1/M2 phenotype macrophage.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Lu Jiandong
Yilong Yang
Jinting Peng
Min Xiang
Dongcai Wang
Guoliang Xiong
Shunmin Li

キーワード

概要

BACKGROUND

Macrophage polarization has been reported to induce podocyte injury, which is a typical characteristic of diabetic nephropathy (DN). Trichosanthes kirilowii is an herb showing renal protective effect as well as immune-regulating effect. Therefore, it was hypothesized that the renal protective effect of Trichosanthes kirilowii was associated with its modulation on macrophage polarization. In the current study, we tested the hypothesis by subjecting DN rats to treatment of Trichosanthes kirilowii lectin (TKL), an active component of Trichosanthes kirilowii.

METHODS

DN was induced using streptozocin (STZ) method, and after 3 days, treatments were performed with different doses of TKL for eight weeks. The effect of TKL on the renal function, structure, and inflammation was assessed. To explain the pathway mediating the effect of TKL on renal tissues, the expressions of markers involved in macrophage polarization, podocyte proliferation, and Notch signaling were determined. Moreover, the DN rats were further administrated with Notch signaling inhibitor, Dibenzazepine (DIB), to verify the key role of Notch signaling in the renal protective effect of TKL.

RESULTS

STZ induced damages in renal function and structure, which was attenuated by TKL of different doses. Moreover, STZ also increased the production of TNF-α and iNOS while suppressed the production of IL-10 and arginase-1 (Arg-1). The induced inflammation by STZ was inhibited by TKL. The polarization of macrophage into M1 type during the development of DN was blocked by TKL, contributing to the increased proliferation potential of podocytes. Regarding Notch signaling, TKL administration inhibited the activation of the pathway by suppressing the expression of Notch1, NICD1, and Hes1. The administration of DIB had similar effect to that of TKL administration on renal function and structure.

CONCLUSIONS

The study for the first time showed that TKL attenuated deterioration in renal structure and function by increasing M2 macrophage proportion via inhibition of Notch signaling.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge