Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Analytical Toxicology 2020-Sep

Can A Recently Developed Pig Model Be Used for In Vivo Metabolism Studies of 7-Azaindole Derived Synthetic Cannabinoids? A Study Using 5F-MDMB-P7AICA

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Adrian Doerr
Frederike Nordmeier
Nadja Walle
Matthias Laschke
Michael Menger
Peter Schmidt
Nadine Schaefer
Markus Meyer

キーワード

概要

New psychoactive substances (NPS), especially synthetic cannabinoids (SC) remain a public health concern. Due to ethical reasons, systematic controlled human studies to elucidate their toxicodynamics and/or toxicokinetics are usually not possible. However, such knowledge is necessary, for example, for determination of screening targets and interpretation of clinical and forensic toxicological data. In the present study, the feasibility of the pig model as an alternative for human in vivo metabolism studies of SC was investigated. For this purpose, the metabolic pattern of the SC methyl-2-{[1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]amino}-3,3-dimethylbutanoate (5F-MDMB-P7AICA) was elucidated in pig urine following inhalative administration (dosage: 200 µg/kg body weight). The results were compared to human and pig liver microsomal assays and literature. In addition, different incubations with isolated cytochrome-P450 monooxygenases (CYP) were conducted to identify the involved isozymes. In total, nine phase I and three phase II metabolites were identified in pig urine. The most abundant reactions were ester hydrolysis, ester hydrolysis combined with glucuronidation, and ester hydrolysis combined with hydroxylation at the tert-butyl moiety. The parent compound was only found up to one hour after administration in pig urine. The metabolite formed after hydroxylation and glucuronidation was detectable for 2 h, the one formed after ester hydrolyzation and defluorination for 4 h after administration. All other metabolites were detected during the whole sampling time. The most abundant metabolites were also detected using both microsomal incubations and monooxygenase screenings revealed that CYP3A4 catalyzed most reactions. Finally, pig data showed to be in line with published human data. To conclude, the main metabolites recommended in previous studies as urinary targets were confirmed by using pig urine. The used pig model seems therefore to be a suitable alternative for in vivo metabolism studies of 7-azaindole-derived SC.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge