Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2020-Aug

CYP3A4 inducer aggravates big flower Evodiae Fructus-induced hepatotoxicity whereas limonin attenuates its hepatotoxicity

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Wei Zhang
Mengjiao Wang
Huijie Song
Chengfeng Gao
Dongmei Wang
Huiming Hua
Yingni Pan
Xiaoqiu Liu

キーワード

概要

Ethnopharmacological relevance: Evodiae Fructus (EF), the traditional Chinese medicine, has been typically used to treat headache, abdominal pain, hernias, and menorrhagia for thousands of years. It is a mild toxicity herb-medicine listed in Sheng Nong's Herbal Classic. Recently, EF was reported to have toxicity or no toxicity in some investigations. Toxicity and approaches to reducing toxicity of EF are of great interest. Limonin (LIM), a major triterpenoid component of EF, also had various pharmacological activities such as anti-inflammatory, anticancer, and antioxidant effects. However, little attention was paid to the role of LIM in EF-induced hepatotoxicity.

Aim of study: The study aimed to address the problem of controversial hepatotoxicity of EF, evaluate the role of CYP3A4 inducer/inhibitor in EF-induced hepatotoxicity and disclose the effect of LIM in EF-induced hepatotoxicity.

Materials and methods: The chemical compositions and hepatotoxicity of small flower EF (SEF), medium flower EF (MEF), big flower EF (BEF) and the "organ knock-out" samples (the shell and seed part of BEF) were investigated. Simultaneously, C57BL-6 mice were randomly divided into four groups, which were given orally administered BEF, BEF in combination with dexamethasone (DEX), BEF in combination with ketoconazole (KTC), and BEF in combination with LIM, respectively.

Results: In this study, more alkaloids and less LIM were detected in BEF compared with the compounds in SEF and MEF. Furthermore, we found that BEF group induced hepatotoxicity whereas no hepatotoxicity was observed in SEF and MEF groups. In addition, no LIM was detected in the shell part of BEF and five alkaloids were not detected in the seed part of BEF. Correspondingly, the shell part of BEF group induced hepatotoxicity whereas no hepatotoxicity was observed in the seed part of BEF group. It was also found that the BEF-induced hepatotoxicity was remarkably exacerbated when the mice were pretreated with DEX whereas the BEF-induced hepatotoxicity could be reversed by pretreatment with KTC or LIM.

Conclusions: Based on the results in this study, the misuse of BEF but not SEF and MEF could produce hepatotoxicity. The hepatotoxicity difference of different categories of EF might be associated with the relative contents of alkaloids and LIM. In addition, the results demonstrated that CYP3A4 inducer aggravated BEF-induced hepatotoxicity and LIM attenuated its hepatotoxicity.

Keywords: CYP3A4; Evodiae Fructus; Hepatoprotection; Hepatotoxicity; Limonin.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge