Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2020-Aug

High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
M Hinojosa
Enrique Albert-Belda
Beatriz Gómez-Muñoz
José Moreno

キーワード

概要

Spatial heterogeneity of soil properties plays a major role in regulating ecosystem structure and functioning. In general, soil resources accumulate beneath woody plant-covered patches more than in the open interspace, making them function as fertility islands. Whilst wildfire is a common disturbance, little information is available on the role of particular plant species in maintaining soil fertility underneath in areas that are subjected to recurrent fires. This is an important issue given that land abandonment, together with a warmer and drier climate, is increasing fire danger in regions such as the Mediterranean. We determined whether increasing fire frequency, producing changes from a Quercus ilex L., woodland to a shrubland, modifies the effect of woody plant canopy on soil fertility. Additionally, the effect of fire history on species-specific leaf and litter nutrient concentration was assessed. Areas affected by none, one, two or three fires were selected. Within each area, soil fertility was measured underneath Cistus ladanifer L., Retama sphaerocarpa L., Phillyrea angustifolia L. and Quercus ilex canopies and in open interspace. Unburned soils located underneath P. angustifolia and Q. ilex canopies were significantly more fertile than in open interspaces. The microsite effect on soil fertility was fire frequency dependent. As fire frequency increased, the plant canopy microsite effect decreased for soil organic matter (SOM), cation exchange capacity (CEC), total C, P, Ca, K and Mg, labile phosphate, arylsulfatase and acid phosphatase activities. Total N, ammonium, nitrate and β-glucosidase activity decreased with increasing fire frequency, but their spatial variability was maintained along all fire frequency scenarios. Fire frequency decreased foliar N concentration but increased P concentration in some species, leading to a decrease in their N:P ratio. Our findings suggest that soil fertility heterogeneity will be reduced with increasing fire frequency. This could compromise the recovery of soil and ecosystem functioning.

Keywords: Fire recurrence; Leaf nutrient content; Litter nutrient content; Soil fertility; Soil spatial heterogeneity.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge