Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2020-Aug

Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Monika Patel
Jaykumar Rangani
Asha Kumari
Asish Parida

キーワード

概要

Arachis hypogaea L. (peanut) is a major oil yielding crop and its productivity is largely affected by the availability of nitrogen and phosphorus. The present study aims to elucidate the differential physiological and biochemical mechanisms involved in two contrasting genotypes of peanut for mitigation of N and/or P deficiency. The plants of two contrasting genotypes of peanut (GG7 and TG26) were subjected to N and/or P deficiency under hydroponic culture condition. After 15 d of N and/or P deficiency, various growth parameters, mineral nutrient status, nutrient use efficiency, photosynthesis, transpiration, water use efficiency, chlorophyll fluorescence, ROS level, and changes in enzymatic and non-enzymatic antioxidative components were measured in control and nutrient deficient plants. Our results showed that GG7 is fast-growing genotype than TG26 under control condition, whereas under N and/or P deficiency growth performance of GG7 was significantly declined as compared to TG26. The levels of photosynthetic pigments, net photosynthesis activity (PN), and stomatal conductance (gs) declined in N and/or P deficient plants of both the genotypes. However, quantum efficiency of photosystem II (Fv/Fm) did not change significantly under N and/or P starvation in both the genotypes. In the present investigation, most of the antioxidative enzymes either remained in steady state or downregulated in both the genotypes of peanut under N and/or P deficiency condition. N and/or P deficiency did not influence the levels of ROS and oxidative stress indicators such as O2·-, H2O2, and MDA in both the genotypes. In the present investigation, the decline in growth in both the genotypes under N and/or P deficiency might be due to the reduced photosynthetic performance. Our results suggest that TG26 is more resistant to N and P deficiency than GG7 genotype. Higher NUE value of GG7 as compared to TG26 suggests that GG7 can utilize N more efficiently to promote biomass production than TG26 under sufficient nutrient condition. On the other hand, mineral resource allocation to leaf and higher PUE are key adaptive features of the TG26 genotype under N, and P deficiency conditions. The differential regulations of various enzymatic and non-enzymatic antioxidative components in peanut genotypes maintain the cellular redox homeostasis under mineral deficiency conditions and prevent the peanut plants from oxidative stress, thereby maintaining PSII efficiency. The information from the present study can be useful for the improvement of traits in peanut that can maintain the productivity under N and P deficient environment with minimum input of fertilizers.

Keywords: Antioxidative enzymes; Arachis hypogaea; Chlorophyll fluorescence; Nitrogen starvation; Nutrient use efficiency; Photosynthesis.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge