Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC complementary medicine and therapies 2020-Jan

"Quantity-effect" research strategy for comparison of antioxidant activity and quality of Rehmanniae Radix and Rehmannia Radix Praeparata by on-line HPLC-UV-ABTS assay.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Hong-Ying Li
Jiang-Ji Fang
Hua-Dan Shen
Xue-Qiong Zhang
Xiao-Ping Ding
Jun-Feng Liu

キーワード

概要

Quantitation analysis and chromatographic fingerprint of multi-components are frequently used to evaluate quality of herbal medicines but fail to reveal activity of the components. It is necessary to develop a rational approach of chromatography coupled with activity detection for quality assessment of herbal medicines.

METHODS
An on-line HPLC-ultraviolet detection-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radical scavenging (HPLC-UV-ABTS) method was developed to obtain the chromatographic fingerprints and ABTS+• inhibition profiles (active fingerprints) of Rehmanniae Radix (Dihuang) and Rehmannia Radix Praeparata (Shu Dihuang). Eighteen compounds showing ABTS+• inhibition activity were identified by HPLC-fourier-transform mass spectrometry (HPLC-FTMS). Verbascoside was used as a positive control to evaluate the total activities of the samples and the contribution rate of each compound. The similarities of the chromatographic and active fingerprints were estimated by the vectorial angle cosine method.

RESULTS
The results showed that the HPLC-UV-ABTS method could efficiently detect antioxidant activity of the herbal medicine samples. The antioxidants were different between the two herbs and several new antioxidants were identified in Shu Dihuang. A function equation was generated in terms of the negative peak area (x) and the concentrations of verbascoside (y, μg/mL), y = 2E-07 × 4 - 8E-05 × 3 + 0.0079 × 2 + 0.5755x + 1.4754, R2 = 1. Iridoid glycosides were identified as main antioxidants and showed their higher contributions to the total activity of the samples. The total contributions of the three main active components in the Dihuang and Shu Dihuang samples to the total activity, such as echinacoside, verbascoside and an unknown compound, were 39.2-58.1% and 55.9-69.4%, respectively. The potencies of the main active components in the Shu Dihuang samples were two to ten times those in the Dihuang samples. Similarity values for S12 in the chromatographic fingerprints and S03, S12 and P03 in the active fingerprints were less than 0.9. The three batches of samples might show their different quality with the other samples.

The results suggested that the combination of "quantity-effect" research strategy and the HPLC-UV-ABTS analysis method could comprehensively evaluate the active components and quality of Dihuang and Shu Dhuang.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge