Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

arsenic/ダイズ

リンクがクリップボードに保存されます
記事臨床試験特許
14 結果

Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Presence of the toxic metalloid, "arsenic (As)" is ubiquitous in the environment especially in the soil and water. Its excess availability in the soil retards growth and metabolism of plants via (a) slowing down the cell division/elongation, (b) overproduction of reactive oxygen species (ROS), (c)

Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Accumulation of heavy metals in soil is of concern to the agricultural production sector, because of the potential threat to food quality and quantity. Inoculation with plant growth-promoting bacteria (PGPR) has previously been shown to alleviate heavy metal stress but the mechanisms are unclear.

Improving soybean growth under arsenic stress by inoculation with native arsenic-resistant bacteria

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Certain metal (loid)-resistant bacteria that inhabit the rhizosphere have shown to improve plant growth and tolerance under toxic metal stress. In this study, we tested if six native, arsenic-resistant and plant growth promoting bacteria (PGPB) were able to enhance soybean (Glycine max L.) growth

Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Uptake of Arsenic (As) in plant tissues can affect metabolism, causing physiological disorders, even death. As toxicity, but also pathogen infections trigger a generalised stress response called oxidative stress; however knowledge on the response of soybean (Glycine max L.) under multiple stressors

Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Soybean (Glycine max) is often being cultivated in soils with moderate to high arsenic (As) concentrations or under irrigation with As contaminated groundwater. The purpose of this study was to determine the effect of As on soybean germination, development and nodulation in soybean-Bradyrhizobium

Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Soybean (Glycine max) is often exposed to high arsenic (As) level in soils or through irrigation with groundwater. In previous studies on As-treated soybean seedlings we showed deleterious effect on growth, structural alterations mainly in root vascular system and induction of antioxidant enzymes.

Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Soybean (Glycine max L.) is often cultivated in areas contaminated with arsenic (As), which negatively affects plant growth and reduces crop yield. The deleterious effects may be due, at least in part, to disturbances in the water status, as was reported for some plants exposed to heavy metals.

Magnetopriming effects on arsenic stress induced morphological and physiological variations in soybean involving synchrotron imaging

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The present study investigates the effect of static magnetic field (SMF) pre-treatment in ameliorating arsenic (As) toxicity in soybean plants in relation to growth, photosynthesis and water transport through leaf venation. Soybean (Glycine max variety JS-9560) seeds pre-treated with SMF (200 mT for

Arsenic toxicity in soybean seedlings and their attenuation mechanisms.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Even though vast areas contaminated with arsenic (As) are under soybean (Glycine max) cultivation, little is known about the growth and intrinsic antioxidant metabolism of soybean in response to As exposure. Thus, an evaluation was carried out of plant growth, root anatomy, antioxidant system and

Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The biosynthesis of phytochelatins (PCs) plays a crucial role in the detoxification and homeostasis of heavy metals and metalloids in plants. However, in an increasing number of plant species metal(loid) tolerance is not well correlated with the accumulation of PCs: tolerant ecotypes frequently

Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Defense responses against cadmium, arsenic and lead were compared in two crop plants such as the monocotyledonous maize (Zea mays cv. Quintal) and dicotyledonous soybean (Glycine max cv. Korada). The applied metals caused root growth retardation, membrane damage and subsequent loss of cell

Plant chitinase responses to different metal-type stresses reveal specificity.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
CONCLUSIONS Chitinases in Glycine max roots specifically respond to different metal types and reveal a polymorphism that coincides with sensitivity to metal toxicity. Plants evolved various defense mechanisms to cope with metal toxicity. Chitinases (EC 3.2.1.14), belonging to so-called

Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Soybean (Glycine max L.) is a good source of natural antioxidants and commonly consumed as fermented products such as cheonggukjang, miso, tempeh, and sufu in Asian countries. The aim of the current study was to examine the influence of novel endophytic bacterial strain, Bacillus

Heavy-metal stress induced accumulation of chitinase isoforms in plants.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Plant chitinases belong to so-called pathogenesis related proteins and have mostly been detected in plants exposed to phytopathogenic viruses, bacteria or fungi. A few studies revealed that they might also be involved in plant defence against heavy metals. This work was undertaken to monitor the
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge