Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

boron/タバコ属

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 16 結果

Boron nutrition of tobacco BY-2 cells. V. oxidative damage is the major cause of cell death induced by boron deprivation.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B
Tobacco (Nicotiana tabacum L.) plants were used to study connections between deficiency in boron and nitrate reduction. Boron deficiency caused a substantial decrease in shoot and, particularly, root weights that resulted in a notably high shoot/root ratio in comparison to boron-sufficient plants.
Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN)

Boron deficiency increases putrescine levels in tobacco plants.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Polyamine concentrations were determined in leaves and roots of tobacco plants (Nicotiana tabacum L.) subjected to a short-term boron deficiency. A decrease in the growth of shoots and, especially, roots was found under this mineral deficiency. Boron deficiency did not lead to a significant decrease

Expression of root glutamate dehydrogenase genes in tobacco plants subjected to boron deprivation.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Recently it has been reported that boron (B) deficiency increases the expression of Nicotiana tabacum asparagine synthetase (AS) gene in roots, and that AS might play a main role as a detoxifying mechanism to convert ammonium into asparagine. Interestingly, glutamate dehydrogenase (GDH) genes,
The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt
The effects of short-term boron deficiency on several aspects (growth, biomass allocation, metabolite concentrations, gene expression, enzyme activities) related with nitrate assimilation were studied in tobacco (Nicotiana tabacum L.) plants in order to know the early changes caused by this mineral
The activity of boron industries is a punctual and diffuse source of air, soil and water pollution. Therefore, it is a priority to study possible ways of reducing this impact. A relatively new technology for reducing soil pollution is phytoremediation, which uses plants and associate microorganisms.
Cultured cells of tobacco (Nicotiana tabacum L.) BY-2 which could propagate at the same rate as the parent cells (1 mg B liter(-1)) under a lower level of boron (0.01 mg B liter(-1)) were obtained. The selected cells had swollen cell walls. In the parent cells, all the RG-II occurred as a B-RG-II

Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The effects of boron (B) deficiency on carbohydrate concentrations and the pattern of phenolic compounds were studied in leaves of tobacco plants (Nicotiana tabacum L.). Plants grown under B deficiency showed a notable increase in leaf carbohydrates and total phenolic compounds when compared to

Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Genes whose expression was up-regulated in low boron (B)-acclimated tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cells, which had been selected under a low supply of B, were screened by the cDNA differential subtraction method. Thirteen genes were identified, including early

Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Major Intrinsic Proteins (MIP) are a family of channels facilitating the diffusion of water and/or small solutes across cellular membranes. X Intrinsic Proteins (XIP) form the least characterized MIP subfamily in vascular plants. XIPs are mostly impermeable to water but facilitate the diffusion of

Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Recent evidence that some species can retranslocate boron as complexes with sugar alcohols in the phloem suggests a possible mechanism for enhancing boron efficiency. We investigated the relationship between sugar alcohol (sorbitol) content, boron uptake and distribution, and translocation of

Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The mobility of elements within plants contributes to a plant species' tolerance of nutrient deficiencies in the soil. The genetic manipulation of within-plant nutrient movement may therefore provide a means to enhance plant growth under conditions of variable soil nutrient availability. In these
B deficiency results in a rapid inhibition of plant growth, and yet the form and function of B in plants remains unclear. In this paper we provide evidence that B is chemically localized and structurally important in the cell wall of plants. The localization and chemical fractionation of B was
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge